Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accumulator Ring Commissioning Latest Step for Spallation Neutron Source

13.02.2006


The Department of Energy’s Spallation Neutron Source, located at Oak Ridge National Laboratory, has passed another milestone on the way to completion this year--the commissioning of the proton accumulator ring. The accumulator ring is the final step in a proton’s journey through the accelerator before it strikes the SNS’s mercury target, "spalling" away neutrons to be used for research.



The DOE Office of Science facility will produce the world’s most intense neutron beams to probe the molecular structures of materials. As a user facility, the SNS is expected to attract researchers from all over the globe.

"The ring is the last major accelerator element delivered by one of the partner labs in the six-laboratory project," said SNS Director Thom Mason. "Its successful operation confirms not just the robustness of the Brookhaven National Laboratory components but also the full integration of accelerator hardware designed and built using expertise throughout the national DOE complex. We are looking forward to the first beam on target later this year."


Brookhaven Lab led the design and construction of the accumulator ring, which will allow an order of magnitude more beam power than any other facility in the world.

In SNS operation, the superconducting linac produces proton pulses traveling at almost 90 percent of the speed of light. In the ring, the protons within a pulse are "accumulated" to increase the intensity 1,000-fold. At that point, this now very intense pulse is extracted and delivered to the mercury target to produce neutrons. This happens 60 times per second.

After only three days of its initial operation, the ring accumulated protons, which were then extracted and sent to a point just short of the target.

"With this extraordinary success, we are definitely on our way to operate the world’s highest intensity proton accelerator," said SNS Accelerator Systems Division Director Norbert Holtkamp.

"The successful commissioning of the accumulator ring--in record time for this type of device--is a testament to the extraordinary collaboration between Brookhaven and Oak Ridge," said Jie Wei, who led the Brookhaven team.

Because of their lack of charge, neutrons have a superior ability to penetrate materials. Researchers can determine a material’s molecular structure by analyzing the way the neutrons scatter after striking atoms within a target material. SNS will direct the spalled neutrons to a host of state-of-the-art instruments.

The SNS will become the world’s leading research facility for study of the structure and dynamics of materials using neutrons. It will operate as a user facility that will enable researchers from the United States and abroad to study the science of materials that forms the basis for new technologies in telecommunications, manufacturing, transportation, information technology, biotechnology and health.

SNS will increase the number of neutrons available to researchers nearly tenfold, providing clearer images of molecular structures. Together, ORNL’s High Flux Isotope Reactor and SNS will represent the world’s foremost facilities for neutron scattering, a technique pioneered at ORNL shortly after World War II.

Five Department of Energy Office of Science laboratories—Argonne, Berkeley, Brookhaven, Jefferson and Los Alamos—participated with Oak Ridge in the design of the SNS project. The $1.4 billion project has been constructed on time and on budget with a safety record of 4.2 million hours without a lost workday injury.

More information on the SNS is available at http://www.sns.gov.

Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy.

Bill Cabage | EurekAlert!
Further information:
http://www.sns.gov
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>