Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Device Revolutionizes Nano Imaging

10.02.2006


Much faster technology allows AFM to capture nano movies, create material properties images


FIRAT simultaneously captures a variety of material properties from just one touch including (from upper left to right) topography, adhesion energy, contact time and stiffness.



While a microphone is useful for many things, you probably wouldn’t guess that it could help make movies of molecules or measure physical and chemical properties of a material at the nanoscale with just one poke.

Georgia Tech researchers have created a highly sensitive atomic force microscopy (AFM) technology capable of high-speed imaging 100 times faster than current AFM. This technology could prove invaluable for many types of nano-research, in particular for measuring microelectronic devices and observing fast biological interactions on the molecular scale, even translating into movies of molecular interactions in real time. The research, funded by the National Science Foundation and the National Institutes of Health, appears in the February issue of Review of Scientific Instruments.


Not only is FIRAT™ (Force sensing Integrated Readout and Active Tip) much faster than AFM (the current workhorse of nanotech), it can capture other measurements never before possible with AFM, including material property imaging and parallel molecular assays for drug screening and discovery. FIRAT could also speed up semiconductor metrology and even enable fabrication of smaller devices. It can be added with little effort to existing AFM systems for certain applications.

“I think this technology will eventually replace the current AFM,” said Dr. Levent Degertekin, head of the project and an asscoiate professor in the Woodruff School of Mechanical Engineering at Georgia Tech. “We’ve multiplied each of the old capabilities by at least 10, and it has lots of new applications.”

FIRAT solves two of AFM’s chief disadvantages as a tool for examining nanostructures — AFM doesn’t record movies and it can’t reveal information on the physical characteristics of a surface, said Dr. Calvin Quate, one of the inventors of AFM and a professor at Stanford University.

“It is possible that this device provides us with the ‘ubiquitous’ tool for examining nanostructures,” Quate added.

And what’s the key to this dramatic increase in speed and capabilities? A completely new microphone-inspired probe.

Current AFM scans surfaces with a thin cantilever with a sharp tip at the end. An optical beam is bounced off the cantilever tip to measure the deflection of the cantilever as the sharp tip moves over the surface and interacts with the material being analyzed.

FIRAT works a bit like a cross between a pogo stick and a microphone. In one version of the probe, the membrane with a sharp tip moves toward the sample and just before it touches, it is pulled by attractive forces. Much like a microphone diaphragm picks up sound vibrations, the FIRAT membrane starts taking sensory readings well before it touches the sample.

And when the tip hits the surface, the elasticity and stiffness of the surface determines how hard the material pushes back against the tip. So rather than just capturing a topography scan of the sample, FIRAT can pick up a wide variety of other material properties.

“From just one scan, we can get topography, adhesion, stiffness, elasticity, viscosity — pretty much everything,” Degertekin said.

For a regular AFM to detect the features of the object, the actuator must be large enough to move the cantilever up and down. The inertia of this large actuator limits the scanning speed of the current AFM. But FIRAT solves this problem by combining the actuator and the probe in a structure smaller than the size of a head of a pin. With this improvement, FIRAT can move over sample topography in a fraction of the time it takes AFM to scan the same area.

Georgia Tech researchers have been able to use FIRAT with a commercial AFM system to produce clear scans of nanoscale features at speeds as high as 60 Hertz (or 60 lines per second). The same system was used to image the topography as well as elastic and adhesive properties of carbon nanotubes simultaneously, which is another first.

FIRAT’s new speed and added features may open up many new applications for AFM.

For instance, FIRAT is capable of scanning integrated circuits for mechanical and material defects. And in biomolecular measurement applications, FIRAT can scan the surface quickly enough for a researcher to observe molecular interactions in real time.

“The potential is huge. AFM started as a topography tool and has exploded to many more uses since. I’m sure people will find all sorts of uses for FIRAT that I haven’t imagined,” Degertekin said.

FIRAT will be available for certain applications immediately, while others may take a few years, Degertekin said.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked ninth among U.S. News & World Report’s top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

Megan McRainey | EurekAlert!
Further information:
http://www.gatech.edu/news-room/release.php?id=858
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>