Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kaboom! Ancient impacts scarred moon to its core, may have created ’man in the moon’

10.02.2006


Ohio State University planetary scientists have found the remains of ancient lunar impacts that may have helped create the surface feature commonly called the "man in the moon."



Their study suggests that a large object hit the far side of the moon and sent a shock wave through the moon’s core and all the way to the Earth-facing side. The crust recoiled -- and the moon bears the scars from that encounter even today.

The finding holds implications for lunar prospecting, and may solve a mystery about how past impacts on Earth affect it’s geology today.


The early Apollo missions revealed that the moon isn’t perfectly spherical. Its surface is warped in two spots; an earth-facing bulge on the near side is complemented by a large depression on the Moon’s far side. Scientists have long wondered whether these surface features were caused by Earth’s gravity tugging on the moon early in its existence, when its surface was still molten and malleable.

According to Laramie Potts and Ralph von Frese, a postdoctoral researcher and professor of geological sciences respectively at Ohio State , these features are instead remnants from ancient impacts.

Potts and von Frese came to this conclusion after they used gravity fluctuations measured by NASA’s Clementine and Lunar Prospector satellites to map the moon’s interior. They reported the results in a recent issue of the journal Physics of the Earth and Planetary Interiors.

They expected to see defects beneath the moon’s crust that corresponded to craters on the surface. Old impacts, they thought, would have left marks only down to the mantle, the thick rocky layer between the moon’s metallic core and its thin outer crust. And that’s exactly what they saw, at first.

Potts pointed to a cross-sectional image of the moon that the scientists created using the Clementine data. On the far side of the moon, the crust looks as though it was depressed and then recoiled from a giant impact, he said. Beneath the depression, the mantle dips down as he and von Frese would expect it to do if it had absorbed a shock.

Evidence of the ancient catastrophe should have ended there. But some 700 miles directly below the point of impact, a piece of the mantle still juts into the moon’s core today.

That was surprising enough. "People don’t think of impacts as things that reach all the way to the planet’s core," von Frese said.

But what they saw from the core all the way to the surface on the near side of the moon was even more surprising. The core bulges, as if core material was pushed in on the far side and pulled out into the mantle on the near side. Above that, an outward-facing bulge in the mantle, and above that -- on the Earth-facing side of the moon -- sits a bulge on the surface.

To the Ohio State scientists, the way these features line up suggests that a large object such as an asteroid hit the far side of the moon and sent a shock wave through the core that emerged on the near side.

The scientists believe that a similar, but earlier impact occurred on the near side.

Potts and von Frese suspect that these events happened about four billion years ago, during a period when the moon was geologically active -- with its core and mantle still molten and magma flowing.

Back then, the moon was much closer to the Earth than it is today, Potts explained, so the gravitational interactions between the two were stronger. When magma was freed from the Moon’s deep interior by the impacts, Earth’s gravity took hold of it and wouldn’t let go.

So the warped surfaces on the near and far sides of the moon and the interior features that connect them are all essentially signs of injuries that never healed.

"This research shows that even after the collisions happened, the Earth had a profound effect on the moon," Potts said.

The impacts may have created conditions that led to a prominent lunar feature.

The "man in the moon" is a collection of dark plains on the Earth-facing side of the moon, where magma from the moon’s mantle once flowed out onto the surface and flooded lunar craters. The moon has long since cooled, von Frese explained, but the dark plains are a remnant of that early active time -- "a frozen magma ocean."

How that magma made it to the surface is a mystery, but if he and Potts are right, giant impacts could have created a geologic "hot spot" on the moon – a site where magma bubbles to the surface. Some time between when the impacts occurred and when the moon solidified, some magma escaped the mantle through cracks in the crust and flooded the nearside surface and formed a lunar “hot spot”.

A hot spot on Earth forms the volcanoes that make the Hawaiian island chain. The Ohio State scientists wondered: could similar ancient impacts have penetrated the Earth, and caused the hot spots that exist here today? von Frese thinks that it’s possible.

"Surely Earth was peppered with impacts, too," he said. "Evidence of impacts here is obscured, but there are hot spots like Hawaii . Some hot spots have corresponding hot spots on the opposite side of the Earth. That could be a consequence of this effect."

He and Potts are exploring the idea, by studying gravitational anomalies under the Chicxulub Crater on Mexico ’s Yucatan Peninsula . A giant asteroid struck the spot some 65 million years ago, and is believed to have set off an environmental chain reaction that killed the dinosaurs.

NASA funded this research. The space agency has been charged with returning astronauts to the moon to prospect for valuable gases and minerals.

But even today, scientists don’t entirely know what the moon is made of – not down to the core, anyway. They can calculate where certain minerals should be, given the conditions they believe existed when the moon formed. But impacts like the one Potts and von Frese discovered have since shuffled materials around. Gravity measurements, they said, will play a key role as scientists figure out what materials lie within the moon, and where.

"We don’t fully understand the way these minerals settle out under temperature and pressure, so the exact composition of the moon is difficult to determine. We have to use gravity measurements to calculate the density of materials, and then use that information to extrapolate the likely composition," Potts said.

von Frese said a lunar base would be needed before scientists can more completely answer these questions.

Potts agreed. "Once we have more rock samples and soil samples, we will have a lot more to go on. Nothing is better than having a person on the ground," he said.

Ralph von Frese | Ohio State University
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>