Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart and sensitive wearables for future emergencies

07.02.2006


The European Integrated Project ProeTEX (Protection e-Textiles: MicroNanoStructured fibre systems for Emergency-Disaster Wear) just started its activities. The project aims to develop an integrated set of functionalized garments for emergency disaster personnel, capable of monitoring physiological and environmental parameters, improving their safety, coordination and efficiency.



The project, launched today, February 3, in Luzern (CH), with a funding of 12 million euros, involves 23 European partners who will be collaborating for the next four years. The partner consortium is a powerful set of Universities, Research Institutions, industrial companies involved in textiles and in healthcare systems, as well as 3 end users capable of testing and validating the applications. The project is lead by the Italian National Research Center S3 - nanoStructures and bioSystems at Surfaces, of INFM-CNR.

An inwoven intelligence


Wearable systems developed by ProeTEX, will monitor the health of the user through vital signs, biochemical parameters, activity and posture, and generate and store its own power. Outer layers of the wearables will measure potential environmental insults (temperature, CO, other toxic gases), offer improved visibility, and continuously communicate data to a central control of rescue operation.

“The core application area is of significant societal importance in itself” - says the project coordinator Annalisa Bonfiglio and Associate Professor at the University of Cagliary (Italy) – “but will also drive a wide range of key technology developments, like specifically textile-based micro-nano technologies”.

Prof. Bonfiglio, currently leading research in organic semiconductors electronics at the Department of Electrical and Electronic Engineering at the University of Cagliari, has recently developed flexible electronic devices on plastic thin films. “Starting from tecnologies that allow us to build flexible sensor devices on different substrates such as textiles or paper” – she says- “we are now aiming to develop directly functionalized fibres, systems that can be assembled directly as a textile material”. “In this way the textile itself becomes an active component, and can be tailored not only according to the physical shape but also to the electronic function”.

These and similar technologies developed by other project parnters, will allow textile systems to integrate sensors, connections, transmission systems, power management for the emergency disaster personnel smart garment. And they will soon address a wider range of other markets from extreme sports, through healthcare to building workers.

Maddalena Scandola | alfa
Further information:
http://www.unimo.it

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>