Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Binary asteroid in Jupiter’s orbit may be icy comets from solar system’s infancy

02.02.2006


A bound pair of icy comets similar to the dirty snowballs circling outside the orbit of Neptune has been found lurking in the shadow of Jupiter.



Astronomers at the University of California, Berkeley, working with colleagues in France and at the Keck Telescope in Hawaii, have calculated the density of a known binary asteroid system that shares Jupiter’s orbit, and concluded that Patroclus and its companion probably are composed mostly of water ice covered by a patina of dirt.

Because dirty snowballs are thought to have formed in the outer reaches of the solar system, from which they are occasionally dislodged and end up looping closer to the sun as comets, the team suggests that the asteroid probably formed far from the sun. It most likely was captured in one of Jupiter’s Trojan points - two eddies where debris collects in Jupiter’s orbit - during a period when the inner solar system was intensely bombarded by comets, around 650 million years after the formation of the solar system.


If confirmed, this could mean that many or most of the probably thousands of Jupiter’s Trojan asteroids are dirty snowballs that originated much farther from the sun and at the same time as the objects now occupying the Kuiper Belt.

"It’s our suspicion that the Trojans are small Kuiper Belt objects," said study leader Franck Marchis, a research astronomer at UC Berkeley.

Marchis and colleagues from the Institut de Mécanique Céleste et Calculs d’Éphémérides (IMCCE) at the Observatoire de Paris and from the W. M. Keck Observatory report their findings in the Feb. 2 issue of Nature.

The team’s conclusion adds support to a recent hypothesis about the evolution of the orbits of our solar system’s largest planets, Jupiter, Saturn, Uranus and Neptune, put forth by a group of researchers headed by Alessandro Morbidelli, a theoretical astronomer with the Conseil National de la Recherche Scientifique laboratory of the Observatoire de la Cote d’Azur, Nice, France.

In a Nature paper earlier this year, Morbidelli and colleagues proposed that icy comets would have been captured in Jupiter’s Trojan points during the early history of the solar system. According to their scenario, during the first few hundred million years after the birth of the solar system, the large gas planets orbited closer to the sun, enveloped in a cloud of billions of large asteroids called planetesimals, perhaps 100 kilometers (62 miles) in diameter or less. Interactions with these planetesimals caused the large gaseous planets to migrate outward until about 3.9 billion years ago, when Jupiter and Saturn entered resonant orbits and began tossing the planetesimals around like confetti, some of them leaving the solar system for good.

The bulk of the remaining planetesimals settled into orbits beyond Neptune - today’s Kuiper Belt and the source of short-period comets - but a small number were captured in the Trojan eddies of the giant planets, in particular Jupiter.

"This is the first time anyone has determined directly the density of a Trojan asteroid, and it supports the new scenario proposed by Morbidelli," said coauthor Daniel Hestroffer, an astronomer at the IMCEE. "These asteroids would have been captured in the Trojan points at a time when the rocky planets were still forming, and this perturbation of the planetesimals about 650 million years after the birth of the solar system could have created the late bombardment of the moon and Mars."

Though Marchis refers to the scenario as "a nice story," he admits that more work needs to be done to provide support for it.

"We need to discover more binary Trojans and observe them to see if low density is a characteristic of all Trojans," he said.

Trojan asteroids are those caught in the so-called Lagrange points of Jupiter’s orbit, located the same distance from Jupiter as Jupiter is from the sun - 5 astronomical units, or 465 million miles. These points, one leading and the other trailing Jupiter, are places were the gravitational attraction of the sun and Jupiter are balanced, allowing debris to collect like dust bunnies in the corner of a room. Hundreds of asteroids have been discovered in the leading (L4) and trailing (L5) points, each orbiting around that point as if in an eddy.

The asteroid 617 Patroclus, originally discovered at L5 and named in 1906, was found to have a companion in 2001, and so far is the only known Trojan binary. The discoverers were not able to estimate the orbit of the components because they had too few observations.

As experienced asteroid hunters, Marchis and his colleagues in August this year discovered the first triple asteroid system, 87 Sylvia, much closer to the sun in the main asteroid belt between Mars and Jupiter, and used a powerful 8-meter telescope of the European Southern Observatory’s Very Large Telescope in Chile to study the three objects. They were able to chart the orbits of the asteroids to estimate the density of Sylvia, from which they concluded it is a rubble-pile of loosely, packed rock.

The French and American team tried the same technique with the much more distant Patroclus, employing imaging data from the Keck II Laser Guide Star System at the W. M. Keck Observatory on Mauna Kea, which yields a sharp resolution impossible with any other ground-based telescope.

"Before, we could only look at objects near a bright reference star, limiting the use of adaptive optics to a small percentage of the heavens," Marchis said. "Now, we can use adaptive optics to view almost any point on the sky."

The laser guide star system uses a laser beam to excite sodium atoms within a small spot in the upper atmosphere. This artificial "star" is used to measure atmospheric turbulence, which is then removed by the movable mirrors of the Keck adaptive optics system.

With the system providing an unparalleled 58 milliarcsecond resolution, the Keck team made five observations in the infrared between November 2004 and July 2005. Marchis and his colleagues determined that the density of Patroclus and its companion, which are about the same size and circle around their center of mass every 4.3 days at a distance of 680 kilometers (423 miles), was very low: 0.8 grams per cubic centimeter, about one third that of rock and light enough to float in water. Assuming a rocky composition similar to that of Jupiter’s moons Callisto and Ganymede, the components of the system would have to be very loosely packed - about half empty space, an internal characteristic which is not expected for a same-size binary system, the researchers concluded.

The team suggests a more reasonable composition of water ice with only 15 percent open space, which makes these objects similar to comets and small Kuiper Belt objects, which have been determined to have densities less than water.

Marchis suspects that the binary system formed when a single large asteroid was torn asunder by the gravitational tug of Jupiter.

"The Patroclus system displays similar characteristics to the binary Near Earth Asteroids, which are believed to have formed during an encounter with a terrestrial planet by tidal splitting," he said. "In the case of a Trojan asteroid, it is only when the work of our collaborators was published recently that we could suggest that this encounter was with Jupiter."

Because in Homer’s Iliad, Patroclus was Achilles’ companion and a hero of the Trojan War, Achilles would have been an appropriate name for one of the two asteroids, which are about the same size. However, another asteroid already has the name Achilles, so Marchis and his collaborators proposed naming the smallest member of the binary system Menoetius, after the father of Patroclus. The Committee on Small Body Names of the International Astronomical Union has tentatively accepted the name. The asteroid designated Menoetius is about 112 kilometers (70 miles) in diameter, while Patroclus is about 122 kilometers (76 miles) wide.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>