Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Binary asteroid in Jupiter’s orbit may be icy comets from solar system’s infancy

02.02.2006


A bound pair of icy comets similar to the dirty snowballs circling outside the orbit of Neptune has been found lurking in the shadow of Jupiter.



Astronomers at the University of California, Berkeley, working with colleagues in France and at the Keck Telescope in Hawaii, have calculated the density of a known binary asteroid system that shares Jupiter’s orbit, and concluded that Patroclus and its companion probably are composed mostly of water ice covered by a patina of dirt.

Because dirty snowballs are thought to have formed in the outer reaches of the solar system, from which they are occasionally dislodged and end up looping closer to the sun as comets, the team suggests that the asteroid probably formed far from the sun. It most likely was captured in one of Jupiter’s Trojan points - two eddies where debris collects in Jupiter’s orbit - during a period when the inner solar system was intensely bombarded by comets, around 650 million years after the formation of the solar system.


If confirmed, this could mean that many or most of the probably thousands of Jupiter’s Trojan asteroids are dirty snowballs that originated much farther from the sun and at the same time as the objects now occupying the Kuiper Belt.

"It’s our suspicion that the Trojans are small Kuiper Belt objects," said study leader Franck Marchis, a research astronomer at UC Berkeley.

Marchis and colleagues from the Institut de Mécanique Céleste et Calculs d’Éphémérides (IMCCE) at the Observatoire de Paris and from the W. M. Keck Observatory report their findings in the Feb. 2 issue of Nature.

The team’s conclusion adds support to a recent hypothesis about the evolution of the orbits of our solar system’s largest planets, Jupiter, Saturn, Uranus and Neptune, put forth by a group of researchers headed by Alessandro Morbidelli, a theoretical astronomer with the Conseil National de la Recherche Scientifique laboratory of the Observatoire de la Cote d’Azur, Nice, France.

In a Nature paper earlier this year, Morbidelli and colleagues proposed that icy comets would have been captured in Jupiter’s Trojan points during the early history of the solar system. According to their scenario, during the first few hundred million years after the birth of the solar system, the large gas planets orbited closer to the sun, enveloped in a cloud of billions of large asteroids called planetesimals, perhaps 100 kilometers (62 miles) in diameter or less. Interactions with these planetesimals caused the large gaseous planets to migrate outward until about 3.9 billion years ago, when Jupiter and Saturn entered resonant orbits and began tossing the planetesimals around like confetti, some of them leaving the solar system for good.

The bulk of the remaining planetesimals settled into orbits beyond Neptune - today’s Kuiper Belt and the source of short-period comets - but a small number were captured in the Trojan eddies of the giant planets, in particular Jupiter.

"This is the first time anyone has determined directly the density of a Trojan asteroid, and it supports the new scenario proposed by Morbidelli," said coauthor Daniel Hestroffer, an astronomer at the IMCEE. "These asteroids would have been captured in the Trojan points at a time when the rocky planets were still forming, and this perturbation of the planetesimals about 650 million years after the birth of the solar system could have created the late bombardment of the moon and Mars."

Though Marchis refers to the scenario as "a nice story," he admits that more work needs to be done to provide support for it.

"We need to discover more binary Trojans and observe them to see if low density is a characteristic of all Trojans," he said.

Trojan asteroids are those caught in the so-called Lagrange points of Jupiter’s orbit, located the same distance from Jupiter as Jupiter is from the sun - 5 astronomical units, or 465 million miles. These points, one leading and the other trailing Jupiter, are places were the gravitational attraction of the sun and Jupiter are balanced, allowing debris to collect like dust bunnies in the corner of a room. Hundreds of asteroids have been discovered in the leading (L4) and trailing (L5) points, each orbiting around that point as if in an eddy.

The asteroid 617 Patroclus, originally discovered at L5 and named in 1906, was found to have a companion in 2001, and so far is the only known Trojan binary. The discoverers were not able to estimate the orbit of the components because they had too few observations.

As experienced asteroid hunters, Marchis and his colleagues in August this year discovered the first triple asteroid system, 87 Sylvia, much closer to the sun in the main asteroid belt between Mars and Jupiter, and used a powerful 8-meter telescope of the European Southern Observatory’s Very Large Telescope in Chile to study the three objects. They were able to chart the orbits of the asteroids to estimate the density of Sylvia, from which they concluded it is a rubble-pile of loosely, packed rock.

The French and American team tried the same technique with the much more distant Patroclus, employing imaging data from the Keck II Laser Guide Star System at the W. M. Keck Observatory on Mauna Kea, which yields a sharp resolution impossible with any other ground-based telescope.

"Before, we could only look at objects near a bright reference star, limiting the use of adaptive optics to a small percentage of the heavens," Marchis said. "Now, we can use adaptive optics to view almost any point on the sky."

The laser guide star system uses a laser beam to excite sodium atoms within a small spot in the upper atmosphere. This artificial "star" is used to measure atmospheric turbulence, which is then removed by the movable mirrors of the Keck adaptive optics system.

With the system providing an unparalleled 58 milliarcsecond resolution, the Keck team made five observations in the infrared between November 2004 and July 2005. Marchis and his colleagues determined that the density of Patroclus and its companion, which are about the same size and circle around their center of mass every 4.3 days at a distance of 680 kilometers (423 miles), was very low: 0.8 grams per cubic centimeter, about one third that of rock and light enough to float in water. Assuming a rocky composition similar to that of Jupiter’s moons Callisto and Ganymede, the components of the system would have to be very loosely packed - about half empty space, an internal characteristic which is not expected for a same-size binary system, the researchers concluded.

The team suggests a more reasonable composition of water ice with only 15 percent open space, which makes these objects similar to comets and small Kuiper Belt objects, which have been determined to have densities less than water.

Marchis suspects that the binary system formed when a single large asteroid was torn asunder by the gravitational tug of Jupiter.

"The Patroclus system displays similar characteristics to the binary Near Earth Asteroids, which are believed to have formed during an encounter with a terrestrial planet by tidal splitting," he said. "In the case of a Trojan asteroid, it is only when the work of our collaborators was published recently that we could suggest that this encounter was with Jupiter."

Because in Homer’s Iliad, Patroclus was Achilles’ companion and a hero of the Trojan War, Achilles would have been an appropriate name for one of the two asteroids, which are about the same size. However, another asteroid already has the name Achilles, so Marchis and his collaborators proposed naming the smallest member of the binary system Menoetius, after the father of Patroclus. The Committee on Small Body Names of the International Astronomical Union has tentatively accepted the name. The asteroid designated Menoetius is about 112 kilometers (70 miles) in diameter, while Patroclus is about 122 kilometers (76 miles) wide.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>