Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sonofusion experiment produces results without external neutron source

30.01.2006


A team of researchers from Rensselaer Polytechnic Institute, Purdue University, and the Russian Academy of Sciences has used sound waves to induce nuclear fusion without the need for an external neutron source, according to a paper in the Jan. 27 issue of Physical Review Letters. The results address one of the most prominent questions raised after publication of the team’s earlier results in 2004, suggesting that "sonofusion" may be a viable approach to producing neutrons for a variety of applications.



By bombarding a special mixture of acetone and benzene with oscillating sound waves, the researchers caused bubbles in the mixture to expand and then violently collapse. This technique, which has been dubbed "sonofusion," produces a shock wave that has the potential to fuse nuclei together, according to the team.

The telltale sign that fusion has occurred is the production of neutrons. Earlier experiments were criticized because the researchers used an external neutron source to produce the bubbles, and some have suggested that the neutrons detected as evidence of fusion might have been left over from this external source.


"To address the concern about the use of an external neutron source, we found a different way to run the experiment," says Richard T. Lahey Jr., the Edward E. Hood Professor of Engineering at Rensselaer and coauthor of the paper. "The main difference here is that we are not using an external neutron source to kick the whole thing off."

In the new setup, the researchers dissolved natural uranium in the solution, which produces bubbles through radioactive decay. "This completely obviates the need to use an external neutron source, resolving any lingering confusion associated with the possible influence of external neutrons," says Robert Block, professor emeritus of nuclear engineering at Rensselaer and also an author of the paper.

The experiment was specifically designed to address a fundamental research question, not to make a device that would be capable of producing energy, Block says. At this stage the new device uses much more energy than it releases, but it could prove to be an inexpensive and portable source of neutrons for sensing and imaging applications.

To verify the presence of fusion, the researchers used three independent neutron detectors and one gamma ray detector. All four detectors produced the same results: a statistically significant increase in the amount of nuclear emissions due to sonofusion when compared to background levels.

As a cross-check, the experiments were repeated with the detectors at twice the original distance from the device, where the amount of neutrons decreased by a factor of about four. These results are in keeping with what would be predicted by the "inverse square law," which provides further evidence that fusion neutrons were in fact produced inside the device, according to the researchers.

The sonofusion debate began in 2002 when the team published a paper in Science indicating that they had detected neutron emissions from the implosion of cavitation bubbles of deuterated-acetone vapor. These data were questioned because it was suggested that the researchers used inadequate instrumentation, so the team replicated the experiment with an upgraded instrumentation system that allowed data acquisition over a much longer time. This led to a 2004 paper published in Physical Review E, which was subsequently criticized because the researchers still used an external neutron source to produce the bubbles, leading to the current paper in Physical Review Letters.

The latest experiment was conducted at Purdue University. At Rensselaer and in Russia, Lahey and Robert I. Nigmatulin performed the theoretical analysis of the bubble dynamics and predicted the shock-induced pressures, temperatures, and densities in the imploding bubbles. Block helped to design, set up, and calibrate a state-of-the-art neutron and gamma ray detection system for the new experiments.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>