Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA-wrapped carbon nanotubes serve as sensors in living cells


Single-walled carbon nanotubes wrapped with DNA can be placed inside living cells and detect trace amounts of harmful contaminants using near infrared light, report researchers at the University of Illinois at Urbana-Champaign. Their discovery opens the door to new types of optical sensors and biomarkers that exploit the unique properties of nanoparticles in living systems.

"This is the first nanotube-based sensor that can detect analytes at the subcellular level," said Michael Strano, a professor of chemical and biomolecular engineering at Illinois and corresponding author of a paper to appear in the Jan. 27 issue of the journal Science. "We also show for the first time that a subtle rearrangement of an adsorbed biomolecule can be directly detected by a carbon nanotube."

At the heart of the new detection system is the transition of DNA secondary structure from the native, right-handed "B" form to the alternate, left-handed "Z" form.

"We found that the thermodynamics that drive the switching back and forth between these two forms of DNA structure would modulate the electronic structure and optical emission of the carbon nanotube," said Strano, who is also a researcher at the Beckman Institute for Advanced Science and Technology and at the university’s Micro and Nanotechnology Laboratory.

To make their sensors, the researchers begin by wrapping a piece of double-stranded DNA around the surface of a single-walled carbon nanotube, in much the same fashion as a telephone cord wraps around a pencil. The DNA starts out wrapping around the nanotube with a certain shape that is defined by the negative charges along its backbone.

When the DNA is exposed to ions of certain atoms -- such as calcium, mercury and sodium -- the negative charges become neutralized and the DNA changes shape in a similar manner to its natural shape-shift from the B form to Z form. This reduces the surface area covered by the DNA, perturbing the electronic structure and shifting the nanotube’s natural, near infrared fluorescence to a lower energy.

"The change in emission energy indicates how many ions bind to the DNA," said graduate student Daniel Heller, lead author of the Science paper. "Removing the ions will return the emission energy to its initial value and flip the DNA back to the starting form, making the process reversible and reusable."

The researchers demonstrated the viability of their measurement technique by detecting low concentrations of mercury ions in whole blood, opaque solutions, and living mammalian cells and tissues -- examples where optical sensing is usually poor or ineffective. Because the signal is in the near infrared, a property unique to only a handful of materials, it is not obscured by the natural fluorescence of polymers and living tissues.

"The nanotube surface acts as the sensor by detecting the shape change of the DNA as it responds to the presence of target ions," Heller said.

James E. Kloeppel | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>