Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA-wrapped carbon nanotubes serve as sensors in living cells

27.01.2006


Single-walled carbon nanotubes wrapped with DNA can be placed inside living cells and detect trace amounts of harmful contaminants using near infrared light, report researchers at the University of Illinois at Urbana-Champaign. Their discovery opens the door to new types of optical sensors and biomarkers that exploit the unique properties of nanoparticles in living systems.



"This is the first nanotube-based sensor that can detect analytes at the subcellular level," said Michael Strano, a professor of chemical and biomolecular engineering at Illinois and corresponding author of a paper to appear in the Jan. 27 issue of the journal Science. "We also show for the first time that a subtle rearrangement of an adsorbed biomolecule can be directly detected by a carbon nanotube."

At the heart of the new detection system is the transition of DNA secondary structure from the native, right-handed "B" form to the alternate, left-handed "Z" form.


"We found that the thermodynamics that drive the switching back and forth between these two forms of DNA structure would modulate the electronic structure and optical emission of the carbon nanotube," said Strano, who is also a researcher at the Beckman Institute for Advanced Science and Technology and at the university’s Micro and Nanotechnology Laboratory.

To make their sensors, the researchers begin by wrapping a piece of double-stranded DNA around the surface of a single-walled carbon nanotube, in much the same fashion as a telephone cord wraps around a pencil. The DNA starts out wrapping around the nanotube with a certain shape that is defined by the negative charges along its backbone.

When the DNA is exposed to ions of certain atoms -- such as calcium, mercury and sodium -- the negative charges become neutralized and the DNA changes shape in a similar manner to its natural shape-shift from the B form to Z form. This reduces the surface area covered by the DNA, perturbing the electronic structure and shifting the nanotube’s natural, near infrared fluorescence to a lower energy.

"The change in emission energy indicates how many ions bind to the DNA," said graduate student Daniel Heller, lead author of the Science paper. "Removing the ions will return the emission energy to its initial value and flip the DNA back to the starting form, making the process reversible and reusable."

The researchers demonstrated the viability of their measurement technique by detecting low concentrations of mercury ions in whole blood, opaque solutions, and living mammalian cells and tissues -- examples where optical sensing is usually poor or ineffective. Because the signal is in the near infrared, a property unique to only a handful of materials, it is not obscured by the natural fluorescence of polymers and living tissues.

"The nanotube surface acts as the sensor by detecting the shape change of the DNA as it responds to the presence of target ions," Heller said.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht A quantum walk of photons
24.05.2017 | Julius-Maximilians-Universität Würzburg

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>