Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closer to home

26.01.2006


Discovery of small, rocky, extrasolar world suggests such planets may be common



Using a relatively new planet-hunting technique that can spot worlds one-tenth the mass of our own, researchers have discovered a potentially rocky, icy body that may be the smallest planet yet found orbiting a star outside our solar system.

The discovery suggests the technique, gravitational microlensing, may be an exceptional technology for finding distant planets with traits that could support life.


"This is an important breakthrough in the quest to answer the question ’Are we alone?’" said Michael Turner, assistant director for the NSF mathematical and physical sciences directorate. "The team has discovered the most Earth-like planet yet, and more importantly, has demonstrated the power of a new technique that is sensitive to detecting habitable planets. It can probe a much greater portion of our galaxy and is complementary to other techniques."

Located more than 20,000 light years away in the constellation Sagittarius, close to the center of our Milky Way galaxy, planet OGLE-2005-BLG-390Lb is approximately five-and-a-half times the mass of Earth.

Orbiting a star one-fifth the mass of the sun at a distance almost three times that of Earth’s orbit, the newly discovered planet is frigid: the estimated surface temperature is -364 degrees Fahrenheit (-220 degrees Celsius).

Although astronomers doubt this cold body could sustain organisms, researchers believe gravitational microlensing will bring opportunities for observing other rocky planets in the "habitable zones" of stars where temperatures are perfect for maintaining liquid water and spawning life.

The discovery, authored by 73 collaborators from 32 institutions, appears in the Jan. 26 issue of the journal Nature.

OGLE (Optical Gravitational Lensing Experiment) project telescopes first observed the lensing event on July 11, 2005. In an attempt to catch microlensing events as they occur, OGLE scans most of the central Milky Way each night, discovering more than 500 microlensing events per year. But to detect the signature of low-mass planets, astronomers must observe these events much more frequently than OGLE’s one survey per night.

So, when OGLE detected the July 11 lensing, its early warning system alerted fellow astronomers across the globe to microlensing event OGLE-2005-BLG-390 (for the 390th Galactic bulge OGLE discovered in 2005). At that point, though, no one knew a planet would emerge.

"The only way to realize the full scientific benefit of our observations is to share the data with our competition," said co-author Bohdan Paczynski of Princeton University and one of the OGLE co-founders.

The telescopes of PLANET (Probing Lensing Anomalies NETwork) and RoboNet tracked the July 11 episode to completion, providing the data that confirmed the presence of a previously unknown planet. The telescopes collect observations more frequently in an attempt to detect the microlensing signature of planets.

"This discovery was possible because the sun never rises on the PLANET collaboration," said lead author and PLANET researcher Jean-Philippe Beaulieu of the Institut d’Astrophysique de Paris, France. "The global nature of the PLANET collaboration was crucial for obtaining data throughout the 24-hour planetary signal," he added.

Ironically, when preparing the final report, the researchers discovered that during its test runs, the new MOA (Microlensing Observations in Astrophysics) telescope, MOA-2, had taken additional measurements of the lensing event. The 6-foot (1.8-meter) aperture telescope has a wider field-of-view than the OGLE telescope, enabling it to observe 100 million stars many times per night. MOA-2 is one of several recent and future advancements that gravitational microlensing proponents hope will greatly increase the number of Earth-like planet discoveries.

OGLE also has plans to increase the field-of-view of its own telescope, and other microlensing groups are proposing to build a new telescope in South Africa. They have also proposed a space mission to see planets with a mass as small as that of Mars, as well as free-floating planets that no longer orbit a host star.

"The new discovery provides a strong hint that low-mass planets may be much more common than Jupiters," said co-author and PLANET researcher David Bennett of the University of Notre Dame. Until recently, most extrasolar planets researchers have found have been Jupiter-like gas giants. "Microlensing should have discovered dozens of Jupiters by now if they were as common as these five-Earth-mass planets. This illustrates the primary strength of the gravitational microlensing method: its ability to find planets of low-mass."

Low-mass planets can yield signals that are too weak to detect with other methods. With microlensing, the signals of low-mass planets are rare but not weak. Thus, scientists say, the rate of low-mass planet discoveries should increase dramatically if more microlensing events can be searched for planetary signals.

What is microlensing?

The gravitational microlensing technique is based on a concept first discussed by Albert Einstein in the early 20th century. When astronomers observe a star, the light waves generally come straight from the star to the telescope. However, if another star passes directly in between, even if great distances separate the two, the gravity of the nearer object acts like a lens and magnifies the incoming light.

Telescopes cannot resolve the details of the magnified image, but they do notice a peak in light intensity, and when a planet is present around the closer star, the planet’s gravity adds an extra little peak or trough of its own.

Astronomers can use those features to determine how large the planet is and how far away it is from its star. This method is 50 times more likely to detect planets of approximately twice the mass of Jupiter than it is to detect planets closer to the mass of Earth. Even relatively tiny, low-mass objects can give a strong peak signal if alignment is perfect.

Of the more than 150 planets discovered to date, almost all were discovered using a different technique, the radial velocity method. Stars with planets can wobble from the effect of their planets’ gravity, and astronomers can use the wobble to determine the size and orbit of the objects. While incredibly effective, existing technology utilizing this method can find only large, Jupiter-like planets or smaller planets that orbit too close to their host stars to harbor life.

Because this is only the third planet astronomers have detected using gravitational microlensing and already they have found a small, rocky body, the researchers believe there is a strong likelihood that rocky planets may be even more common than their gas-giant brethren. This prediction would agree with one of the models for solar system formation, core accretion, which suggests that small, rocky, "failed Jupiters" should be far more common than the massive gaseous planets.

Josh Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Foster tadpoles trigger parental instinct in poison frogs

20.09.2017 | Life Sciences

Drones can almost see in the dark

20.09.2017 | Information Technology

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>