Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore researchers shed new light on the physical properties of carbon

25.01.2006


A team based in Livermore has shed some new light on the phase diagram of carbon at high pressure and temperature.


Graphic simulation of the electronic wave function (MLWF) in liquid carbon at a temperature of 9,000°Kelvin and five million atmospheres of pressure, showing a persistent covalent bonding even under these extreme conditions. At this pressure diamond melts at about 8,000°K.



In particular, the authors determined the solid/liquid and solid/solid phase boundaries for pressures up to 20 million Earth atmospheres and more than 10,000 degrees Kelvin. The simulations provide results on the physical properties of carbon, which are of great importance for devising models of Neptune, Uranus and white dwarf stars, as well as of extrasolar carbon-rich planets.

In its elemental form, carbon is found in coal, graphite, diamond, bucky balls and nanotubes. These are materials with very different properties, yet at the microscopic level they only differ by the geometrical arrangements of carbon atoms.


Elemental carbon has been known since prehistory, and one of its best known forms, diamond, is thought to have been first mined in India more than 2,000 years ago. The properties of diamond and its practical and technological applications have been extensively investigated for many centuries.

Despite important experimental work over the last few decades aimed at studying compressed diamond, the phase boundaries and melting properties of elemental carbon are poorly known, and its electronic properties under extreme conditions are not well understood. Experimental data are scarce because of difficulties in reaching megabar (one million atmospheres) pressures and temperature regimes of thousands of degrees Kelvin in the laboratory.

The research team is composed of Alfredo Correa, Stanimir Bonev and Giulia Galli, all of whom were at Lawrence Livermore National Laboratory (LLNL) at the time the work began. Galli is now a professor at UC Davis, and Bonev is an assistant professor at Dalhousie University in Canada.

“Our results show a consistent description of elemental carbon in a broad range of temperature and pressures and a description of its electronic properties within the same framework,” said Correa, a Student Employee Graduate Research Fellowship (SEGRF) student from UC Berkeley who works in LLNL’s Quantum Simulations Group in the Physics and Advanced Technology Directorate. Correa is the lead author of a paper on the recent findings that appears in the online version of the Proceedings of the National Academy of Sciences for the week of Jan. 23-27.

The researchers also discovered that the diamond/BC8/liquid triple point (the temperature and pressure at which these three phases coexist in thermodynamic equilibrium) is at a lower pressure than previously thought (BC8 denotes a solid phase of carbon into which diamond transforms above 12 megabar at zero temperature). The conditions at which the triple point is found are close to recent estimates of the core conditions (temperature and pressure) in Neptune and Uranus.

“Our simulation results call for a partial revision of current planetary models, especially for the description of their core regions,” Correa said. “Our computational work also may help us interpret future experimental work.”

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and to apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>