Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore researchers shed new light on the physical properties of carbon

25.01.2006


A team based in Livermore has shed some new light on the phase diagram of carbon at high pressure and temperature.


Graphic simulation of the electronic wave function (MLWF) in liquid carbon at a temperature of 9,000°Kelvin and five million atmospheres of pressure, showing a persistent covalent bonding even under these extreme conditions. At this pressure diamond melts at about 8,000°K.



In particular, the authors determined the solid/liquid and solid/solid phase boundaries for pressures up to 20 million Earth atmospheres and more than 10,000 degrees Kelvin. The simulations provide results on the physical properties of carbon, which are of great importance for devising models of Neptune, Uranus and white dwarf stars, as well as of extrasolar carbon-rich planets.

In its elemental form, carbon is found in coal, graphite, diamond, bucky balls and nanotubes. These are materials with very different properties, yet at the microscopic level they only differ by the geometrical arrangements of carbon atoms.


Elemental carbon has been known since prehistory, and one of its best known forms, diamond, is thought to have been first mined in India more than 2,000 years ago. The properties of diamond and its practical and technological applications have been extensively investigated for many centuries.

Despite important experimental work over the last few decades aimed at studying compressed diamond, the phase boundaries and melting properties of elemental carbon are poorly known, and its electronic properties under extreme conditions are not well understood. Experimental data are scarce because of difficulties in reaching megabar (one million atmospheres) pressures and temperature regimes of thousands of degrees Kelvin in the laboratory.

The research team is composed of Alfredo Correa, Stanimir Bonev and Giulia Galli, all of whom were at Lawrence Livermore National Laboratory (LLNL) at the time the work began. Galli is now a professor at UC Davis, and Bonev is an assistant professor at Dalhousie University in Canada.

“Our results show a consistent description of elemental carbon in a broad range of temperature and pressures and a description of its electronic properties within the same framework,” said Correa, a Student Employee Graduate Research Fellowship (SEGRF) student from UC Berkeley who works in LLNL’s Quantum Simulations Group in the Physics and Advanced Technology Directorate. Correa is the lead author of a paper on the recent findings that appears in the online version of the Proceedings of the National Academy of Sciences for the week of Jan. 23-27.

The researchers also discovered that the diamond/BC8/liquid triple point (the temperature and pressure at which these three phases coexist in thermodynamic equilibrium) is at a lower pressure than previously thought (BC8 denotes a solid phase of carbon into which diamond transforms above 12 megabar at zero temperature). The conditions at which the triple point is found are close to recent estimates of the core conditions (temperature and pressure) in Neptune and Uranus.

“Our simulation results call for a partial revision of current planetary models, especially for the description of their core regions,” Correa said. “Our computational work also may help us interpret future experimental work.”

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and to apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>