Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore researchers shed new light on the physical properties of carbon

25.01.2006


A team based in Livermore has shed some new light on the phase diagram of carbon at high pressure and temperature.


Graphic simulation of the electronic wave function (MLWF) in liquid carbon at a temperature of 9,000°Kelvin and five million atmospheres of pressure, showing a persistent covalent bonding even under these extreme conditions. At this pressure diamond melts at about 8,000°K.



In particular, the authors determined the solid/liquid and solid/solid phase boundaries for pressures up to 20 million Earth atmospheres and more than 10,000 degrees Kelvin. The simulations provide results on the physical properties of carbon, which are of great importance for devising models of Neptune, Uranus and white dwarf stars, as well as of extrasolar carbon-rich planets.

In its elemental form, carbon is found in coal, graphite, diamond, bucky balls and nanotubes. These are materials with very different properties, yet at the microscopic level they only differ by the geometrical arrangements of carbon atoms.


Elemental carbon has been known since prehistory, and one of its best known forms, diamond, is thought to have been first mined in India more than 2,000 years ago. The properties of diamond and its practical and technological applications have been extensively investigated for many centuries.

Despite important experimental work over the last few decades aimed at studying compressed diamond, the phase boundaries and melting properties of elemental carbon are poorly known, and its electronic properties under extreme conditions are not well understood. Experimental data are scarce because of difficulties in reaching megabar (one million atmospheres) pressures and temperature regimes of thousands of degrees Kelvin in the laboratory.

The research team is composed of Alfredo Correa, Stanimir Bonev and Giulia Galli, all of whom were at Lawrence Livermore National Laboratory (LLNL) at the time the work began. Galli is now a professor at UC Davis, and Bonev is an assistant professor at Dalhousie University in Canada.

“Our results show a consistent description of elemental carbon in a broad range of temperature and pressures and a description of its electronic properties within the same framework,” said Correa, a Student Employee Graduate Research Fellowship (SEGRF) student from UC Berkeley who works in LLNL’s Quantum Simulations Group in the Physics and Advanced Technology Directorate. Correa is the lead author of a paper on the recent findings that appears in the online version of the Proceedings of the National Academy of Sciences for the week of Jan. 23-27.

The researchers also discovered that the diamond/BC8/liquid triple point (the temperature and pressure at which these three phases coexist in thermodynamic equilibrium) is at a lower pressure than previously thought (BC8 denotes a solid phase of carbon into which diamond transforms above 12 megabar at zero temperature). The conditions at which the triple point is found are close to recent estimates of the core conditions (temperature and pressure) in Neptune and Uranus.

“Our simulation results call for a partial revision of current planetary models, especially for the description of their core regions,” Correa said. “Our computational work also may help us interpret future experimental work.”

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and to apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>