Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton scores 1000 top-class science results

25.01.2006


XMM-Newton, ESA’s X-ray observatory, continues its quest for the unknown. This month, after five years of operations, the mission saw the publication of its 1000th scientific paper, corresponding to an equivalent number of results, in top-class scientific journals. This is not the only record-breaking figure for this X-ray ’hunter’ mission.



There are several ways to measure the scientific success of a mission. One is certainly to look at the use the scientific community makes of the data obtained by the mission, and at the number, novelty and significance of the results so produced.

From the very beginning of its operations in early 2000, hundreds of scientists all around the world have been subscribing to ’book’ observing time with XMM-Newton, eager to obtain data and new clues about the hidden and powerful phenomena taking place in the Universe – black holes, birth and death of stars, active galactic nuclei.


Each of the five calls for observation proposals issued so far by ESA towards the scientific community, resulted in a subscription exceeding by seven times the observing slots available. More than 1600 astronomers, an estimated 20 per cent of the world-wide community, had participated to provide their ideas for using XMM-Newton to target highly energetic, exotic and still mysterious space objects.

Scientific results based on XMM-Newton data are now being published at a steady rate of almost 300 papers per year, comparable to the famous Hubble Space Telescope.

Why this huge interest in XMM-Newton? What gives the mission such a world-class profile?

The fact is that XMM-Newton’s capabilities are unprecedented and unique, with optics that are a masterpiece of engineering. Each of its three X-ray telescopes is made of 58 co-axial cylindrical mirrors, capable of reflecting X-rays coming from numerous cosmic sources onto the spacecraft special detectors. This is enabling astronomers to discover in one day more than any other X-ray mission has discovered over weeks of operations.

XMM-Newton is among the X-ray observatories with the highest spectral resolution. It is in fact with X-ray spectroscopy - the spreading of light into its components - that XMM-Newton is revealing the deepest secrets of a source, such as its chemical composition, temperature, and even its velocity.

The huge collective area of the mirrors is fundamental to obtain high-quality spectra of faint and serendipitous objects with the imaging cameras. Furthermore, with its six powerful instruments including an optical monitor with ultraviolet capabilities, this space observatory can have a look at sources in several wavelengths simultaneously.

XMM-Newton has been already unveiling many stars’ secrets. Among its discoveries, it characterised for the first time X-ray spectra and light curves of some classes of proto-stars (stars being born) and provided an unprecedented insight into the X-ray variability of the corona of stars similar to our Sun.

With its capability to respond as quickly as five hours to target-of-opportunity requests for observing elusive gamma-ray bursts, this space observatory detected for the first time an X-ray halo around the bursts, where the halo appeared as concentric ring-like structures centred on the burst location.

XMM-Newton has already shed new light on supernovae remnants, as well as on neutron stars. On the latter, an exciting discovery was that of a bow shock aligned with the supersonic motion of a neutron star (called ’Geminga’), and the detection of hot spots indicating that the configuration of neutron stars magnetic field and surface temperatures are much more complex than previously thought.

These and other fundamental discoveries on clusters of galaxies, dark matter, and the way of determining mass and spin in gigantic black holes in active galactic nuclei, are only a part of the findings obtained thanks to XMM-Newton’s data. "The mission source catalogue contains detailed information on about 50 000 new X-ray sources. This will rise up to 200 000 this year, when a new catalogue is to be released," says Norbert Schartel, ESA Project Scientist for XMM-Newton. "These top-class data are precious material for the astronomical community which is already making an extraordinary use of them."

"We are glad and proud that XMM-Newton results continue to break new ground in many scientific fields, and we are looking forward to the exciting challenges that lie ahead for the mission," he concludes.

Fred Jansen | alfa
Further information:
http://www.esa.int/esaSC/SEMAB0NZCIE_index_0.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>