Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single molecule motor inspired by natural energy conversion

24.01.2006


A single molecule working as the nano scale version of the steam engine: that’s the molecular motor developed by a group of UT scientists led by prof. Julius Vancso of the MESA+ Institute for Nanotechnology. Natural ‘motor molecules’, capable of converting chemical energy into movement, have been the source of inspiration for this new synthetic version: a polymer molecule that stretches and shrinks caused by redox reactions. The results appear on the cover of Rapid Macromolecular Rapid Communications of January 23 .


The cycle of oxidation and reduction, causing soft/hard transitions within the molecule. The associated stretching and shrinking gives the mechanical energy. The forces are monitored by the tip of an Atomic Force Microscope, on top of the molecule. The bottom of the chain is fixed on a gold surface.



In nature, some proteins are capable of converting chemical into mechanical energy, by burning ‘fuel molecules’. The synthetic version now presented is a polymer chain, fixed on a surface on one side. Fully stretched, this molecule is a few tens of nanometers long. A cyclic process can be started, in which parts of the chain alternately harden and soften. The result is an amount of mechanical energy, sufficient for driving future nano devices like pumps, valves and levers.

Iron


Just like in nature, redox reactions are the basis for the working principle of the engine: during reduction and oxidation, electrons are interchanged. To stimulate these reactions, iron is introduced within the polymer chain (PFS: polyferrocenydimethylsilane). This iron is alternately oxidized and reduced when the chain is put on a suitable voltage level. This cyclic process causes the soft/hard transitions and the shrinking and stretching of the chain. The researchers now use an atomic force microscope to be able to sense the forces and to get hold of the molecule on the top side. They estimate the efficiency of the conversion to be ten percent. Compared to conversion processes in nature: using photo synthesis, plants convert energy with an efficiency of 13 percent, and the estimated efficiency of the conversion of the chemical energy of food within the human body is about five percent.

A major additional advantage of the new molecular motor presented is that it can be positioned very accurately and controlled on a surface. In this way, it is possible to create a true array of engines and connect the nano devices to them. The distance between the motors can be kept very small. In light-driven nanomotors earlier presented, the minimum distance was limited by the wavelength of the light used, for example.

Wiebe van der Veen | alfa
Further information:
http://mtp.tnw.utwente.nl

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>