Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the weather on Titan?

23.01.2006


Spying Titan’s weather


Using recent Cassini, Huygens and Earth-based observations, scientists have been able to create a computer model which explains the formation of several types of ethane and methane clouds on Titan.

Clouds have been observed recently on Titan, Saturn’s largest moon, through the thick haze, using near-infrared spectroscopy and images of the south pole and temperate regions near 40° South. Recent observations from Earth-based telescopes and the NASA/ESA/ASI Cassini spacecraft are now providing an insight into cloud climatology.

A European team, led by Pascal Rannou of the Service d’Aeronomie, IPSL Universite de Versailles-St-Quentin, France, has developed a general circulation model which couples dynamics, haze and cloud physics to study Titan climate and enables us to understand how the major cloud features which are observed, are produced.

This climate model also allows scientists to predict the cloud distribution for the complete Titan year (30 terrestrial years), and especially in the next years of Cassini observations.



The Voyager missions of the early 1980s gave the first indications of condensate clouds on Titan. Because of the cold temperatures in the moon’s atmosphere (tropopause), it was assumed that most of the organic chemicals formed in the upper atmosphere by photochemistry would condense into clouds while sinking. Methane would also condense at high altitudes, it was believed, having been transported from the surface.

Since then, several one-dimensional models of Titan’s atmosphere including sophisticated microphysics models were created to predict the formation of drops of ethane and methane. Similarly, the methane cycle had been studied separately in a circulation model, but without cloud microphysics.

These studies generally found that methane clouds could be triggered when air parcels cooled while moving upward or from equator to pole. However, these models hardly captured the fine details of the methane and ethane cloud cycles.

What Rannou’s team has done is to combine a cloud microphysical model into a general circulation model. The team can now identify and explain the formation of several types of ethane and methane clouds, including the south polar and sporadic clouds in the temperate regions, especially at 40° S in the summer hemisphere.

The scientists found that the predicted physical properties of the clouds in their model matched well with recent observations. Methane clouds that have been observed to date appear in locations where ascending air motions are predicted in their model.

The observed south polar cloud appears at the top of a particular ‘Hadley cell’, or mass of vertically circulating air, exactly where predicted at the south pole at an altitude of around 20-30 kilometres.

The recurrent large zonal (longitudinal direction) clouds at 40° S and the linear and discrete clouds that appear in the lower latitudes are also correlated with the ascending part of similar circulation cell in the troposphere, whereas smaller clouds at low latitudes, similar to the linear and discrete clouds already observed by Cassini are rather produced by mixing processes.

"Clouds in our circulation model are necessarily simplified relative to the real clouds, however the main cloud features predicted find a counterpart in reality.

"Consistently, our model produces clouds at places where clouds are actually observed, but it also predicts clouds that have not, or not yet, been observed," said Pascal Rannou.

Titan’s cloud pattern appears to be similar to that of the main cloud patterns on Earth and Mars. The puzzling clouds at 40° S are produced by the ascending branch of a Hadley cell, exactly like tropical clouds are in the Intertropical Convergence Zone (ITCZ), as on Earth and Mars.

Polar clouds - produced by ’polar cells’ - are similar to those produced at mid-latitudes on Earth. On other hand, clouds only appears at some longitudes. This is a specific feature of Titan clouds, and may be due to a Saturn tidal effect. The dynamical origin of cloud distribution on Titan is easy to test.

Cloudiness prediction for the coming years will be compared to observations made by Cassini and ground-based telescopes. Specific events will definitely prove the role of the circulation on the cloud distribution.

Jean-Pierre Lebreton | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMAXTMZCIE_0.html
http://www.rssd.esa.int

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>