Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Toward a quantum computer, one dot at a time


Pitt researchers develop nanoscale semiconductor islands small enough to hold single electrons

Researchers at the University of Pittsburgh have developed a way to create semiconductor islands smaller than 10 nanometers in scale, known as quantum dots. The islands, made from germanium and placed on the surface of silicon with two-nanometer precision, are capable of confining single electrons.

"We believe this development moves us closer to our goal of constructing a quantum computer," said Jeremy Levy, Pitt professor of physics and astronomy and director of the Pittsburgh-based Center for Oxide-Semiconductor Materials for Quantum Computation. Levy and colleagues reported on the advance in a paper published in October 2005 in the journal Applied Physics Letters.

Quantum computers do not yet exist, but it is known that they can bypass all known encryption schemes used today on the Internet. Quantum computers also are capable of efficiently solving the most important equation in quantum physics: the Schrödinger equation, which describes the time-dependence of quantum mechanical systems. Hence, if quantum computers can be built, they likely will have as large an impact on technology as the transistor.

Electrons have a property known as "spin," which can take one of two directions--clockwise and counter-clockwise. Because of their quantum-mechanical nature, electrons can spin in both directions at once. That bizarre property allows the spin to be used as a "quantum bit" in a quantum computer. The ability to confine individual electrons, as opposed to "puddles" of electrons used in conventional computer technology, is essential for the working of a quantum computer.

The next step, said Levy, is to perform electronic and optical measurements on these materials to prove that there is indeed one electron on each quantum dot and to probe the coupling between the spins of neighbor electrons. "We can do that now because we have this control over the spacing and the size," he said.

The results achieved by Levy and colleagues are an example of "essentially nano" research, which involves manipulating properties at the smallest scales--from one to 20 nanometers.

Pitt has invested heavily in nanoscale research, beginning with the establishment of its Institute for NanoScience and Engineering (INSE), and continuing with the NanoScale Fabrication and Characterization Facility, which contains core technology such as electron-beam lithography, transmission electron microscopes, and a state-of-the-art cleanroom environment. The INSE is an integrated, multidisciplinary organization that brings coherence to the University’s research efforts and resources in the fields of nanoscale science and engineering. For more information, visit

Other researchers on the study were John T. Yates Jr., R.K. Mellon Professor of Chemistry and Physics at Pitt; former Pitt chemistry graduate student Olivier Guise; Joachim Ahner of Pittsburgh-based Seagate Technology; and Venugopalan Vaithyanathan and Darrell G. Schlom of Pennsylvania State University.

Karen Hoffmann | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>