Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian Snow Source of Tropical Glaciers, Research Team Reports

20.01.2006


Snow is the source of glacial deposits found at the base of the majestic volcanoes and mountains dotting the mid-latitude and tropical regions of Mars. Based on an innovative blend of geological observations and climate modeling created by a team of American and French scientists, the finding appears in Science.



Discovery of the source of the tropical glaciers ends a 30-year Martian mystery. In 1976, cameras aboard NASA’s Viking Mission to Mars captured unprecedented views of the canyons and craters of the Red Planet – including polar ice caps. Recent spacecraft data reveal curious rock-strewn deposits found at the foot of volcanoes and mountains close to the equator.

In the last two years, Brown University planetary geologist James Head and other Mars experts have offered up mounting evidence that these ice-rich landforms – which appear to ooze out of valleys in the Eastern Hellas region or puddle on the western flanks of the three giant volcanoes known as the Tharsis Montes – are the remnants of geologically recent glaciers.


But how could ice form so far from the planet’s poles? Long-ago landslides? Upwelling from an underground reservoir?

“What we found,” Head said, “was that the glaciers were formed from snow brought from the polar regions.”

A few million years ago, Head and the team explain, the axis of Mars was tilted in such a way that the poles were pointing dramatically closer to the sun. Sun rays hit the polar ice caps nearly head on, releasing massive amounts of water vapor into the atmosphere. Monsoon-like winds carried the water vapor south, up and over the soaring slopes of the Tharsis Montes volcanoes and Olympus Mons, the solar system’s largest volcano. The vapor cooled, condensed and fell in the form of snow. Over time, the snow turned to ice, the ice formed glaciers, and the glaciers created the deposits seen today.

The Martian precipitation cycle described in Science is similar to the one on Earth that routinely blankets mountainous regions such as the Rockies in snow. Another Earthly analog: the tropical mountain glaciers described in the article can be found in places such as Mount Kilimanjaro in Africa or the Andean peaks in South America.

The team arrived at their finding using a climate model that simulated the present-day Mars water cycle but assumed a 45-degree axial tilt found on the planet millions of years ago. The model created a near-perfect match of predicted ice accumulation and direct observational evidence from images taken by the Mars Express, Mars Global Surveyor and Mars Odyssey orbiters.

“The findings are important because they tell us that Mars has experienced big climate changes in the past, the kinds of climate change that led to the Great Ice Age here on Earth,” said Head, the Louis and Elizabeth Scherck Distinguished Professor at Brown. “The findings are also interesting because this precipitation pattern may have left pockets of ice scattered across Mars. This is good information for NASA as officials plan future space missions, particularly with astronauts.”

The team also includes scientists from the Institut Pierre Simon Laplace and the Institut de Mecanique in Paris as well as the NASA Ames Research Center. The Centre National de la Recherche Scientifique, the European Space Agency and NASA funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>