Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method developed for exploring frustrated systems

20.01.2006


This magnetic-force microscope image shows the magnetic moments of artificial spin ice. The peaks and valleys show the orientations of the magnetic moments. Credit: William McConville and Ruifang Wang, Penn State


This magnetic-force microscope image shows the magnetic moments of artificial spin ice. The peaks and valleys show the orientations of the magnetic moments. Credit: Gilberto Morando and Cristiano Nisoli


A new method for exploring the secrets of Mother Nature’s frustrations has been developed by a team of physicists lead by Penn State University professors Peter Schiffer, Vincent Crespi, and Nitin Samarth. The research, which will be published this week in the journal Nature, is is an important contribution to the study of complex interacting systems, and it also could contribute to technologies for advanced magnetic-recording devices.

"We all would prefer to have less personal experience with frustration, but the state of frustration also is an important factor in the way many systems in nature work," explains Schiffer, who is a professor of physics at Penn State. "Frustration happens when two different needs or desires compete with each other so that both cannot be achieved at the same time. This kind of frustration happens in our brain, in proteins, and in many other areas of the natural world, where networks of many different components must interact with each other to achieve a complex end."

Schiffer explains, for example, that neural networks, which allow the brain to function, and protein molecules, which allow living matter to function, consist of thousands to millions of interacting components, and that a crucial element of these interactions is that they often are "frustrated." "When two different and competing signals are sent in the brain, the brain needs to choose which signal will dominate in order to take a particular action," Schiffer says. "Frustration happens even in a simple substance such as ice, which consists of only hydrogen and oxygen atoms, because there are competing forces on the hydrogen atoms pushing them between different positions relative to their neighboring oxygen atoms," he explains.



Understanding the consequences of frustration in an extremely complex system like the brain is very difficult, so there is a great deal of research interest in studying simpler frustrated systems, like ice, in order to obtain a basic understanding of the nature of frustration. One group of such systems are materials in which some of the individual atoms have "magnetic moments," meaning that each atoms is like a tiny bar magnet or compass needle. If a material has these atoms arranged in certain ways, the interactions among groups of magnetic atoms compete with each other, which leads to a state of frustration. These "frustrated magnetic materials" are perhaps the cleanest systems in which frustration can be studied and have been the subject of intense research.

"The direction along which the magnetic moment of these magnetic atoms is pointed is determined by interactions with the other magnetic atoms in the material," Schiffer explains; "however, it has been almost impossible to look at the magnetic states of individual atoms, and existing chemical-synthesis techniques do not permit the strength of the interactions within these materials to be easily tuned." As a result, physicists have been able to study only the collective behavior of a group of frustrated magnetic atoms--not the specific behavior of the individual atoms.

Now, Schiffer and his colleagues have developed a new method to study the subtleties of frustration, which involves using "electron beam lithography" to build a magnetically frustrated material by sculpting arrays of hundreds of thousands of microscopic bar magnets, each only a few millionths of an inch in size. The samples were fabricated at the Penn State Nanofabrication Facility by Penn State graduate student Ruifang Wang. "Rather than relying on chemically synthesized materials whose magnetic atoms are pre-arranged, we decided to make our own frustrated system," Samarth says. "We tailored our system to mimic the magnetic structure of a specific set of materials that we wished to study, in which the frustrated magnetic atoms are arranged so that they behave in a manner exactly analogous to the hydrogen atoms in ice. Ruifang put in a truly heroic effort in getting the experiment to work." This set of materials is called "spin ice" since "spin" is another way of denoting the magnetism of an individual atom.

Because the systems made by Schiffer and his colleagues were created intentionally with a particular size and arrangement of individual magnets, the researchers were able to arrange the system so that the interactions between the magnets were frustrated in the same manner as in spin-ice materials. "Using a special microscope, we could see the direction in which each magnetic moment was pointing in this artificial spin ice, something which is impossible with either chemically synthesized frustrated magnetic materials or with ordinary ice," Schiffer says. "We also could change the spacing of the arrays, which allows us to tune the strength of the frustrated interactions."

The researchers say this work is an important step forward in the study of the nature of frustration in large networks. "Using such fabricated arrays, it now is possible to engineer frustrated systems to alter the strength of interactions, the geometry of the lattice, the type and number of defects, and other properties that impact the nature of frustration," Schiffer explains. These systems also allow scientists to probe the state of individual elements within a frustrated system. The interacting magnets also are relevant to modern magnetic-recording technology, which relies on increasingly tiny magnetic structures in order to fit more and more information onto smaller and smaller hard drives.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

nachricht Taming 'wild' electrons in graphene
23.10.2017 | Rutgers University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>