Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method developed for exploring frustrated systems

20.01.2006


This magnetic-force microscope image shows the magnetic moments of artificial spin ice. The peaks and valleys show the orientations of the magnetic moments. Credit: William McConville and Ruifang Wang, Penn State


This magnetic-force microscope image shows the magnetic moments of artificial spin ice. The peaks and valleys show the orientations of the magnetic moments. Credit: Gilberto Morando and Cristiano Nisoli


A new method for exploring the secrets of Mother Nature’s frustrations has been developed by a team of physicists lead by Penn State University professors Peter Schiffer, Vincent Crespi, and Nitin Samarth. The research, which will be published this week in the journal Nature, is is an important contribution to the study of complex interacting systems, and it also could contribute to technologies for advanced magnetic-recording devices.

"We all would prefer to have less personal experience with frustration, but the state of frustration also is an important factor in the way many systems in nature work," explains Schiffer, who is a professor of physics at Penn State. "Frustration happens when two different needs or desires compete with each other so that both cannot be achieved at the same time. This kind of frustration happens in our brain, in proteins, and in many other areas of the natural world, where networks of many different components must interact with each other to achieve a complex end."

Schiffer explains, for example, that neural networks, which allow the brain to function, and protein molecules, which allow living matter to function, consist of thousands to millions of interacting components, and that a crucial element of these interactions is that they often are "frustrated." "When two different and competing signals are sent in the brain, the brain needs to choose which signal will dominate in order to take a particular action," Schiffer says. "Frustration happens even in a simple substance such as ice, which consists of only hydrogen and oxygen atoms, because there are competing forces on the hydrogen atoms pushing them between different positions relative to their neighboring oxygen atoms," he explains.



Understanding the consequences of frustration in an extremely complex system like the brain is very difficult, so there is a great deal of research interest in studying simpler frustrated systems, like ice, in order to obtain a basic understanding of the nature of frustration. One group of such systems are materials in which some of the individual atoms have "magnetic moments," meaning that each atoms is like a tiny bar magnet or compass needle. If a material has these atoms arranged in certain ways, the interactions among groups of magnetic atoms compete with each other, which leads to a state of frustration. These "frustrated magnetic materials" are perhaps the cleanest systems in which frustration can be studied and have been the subject of intense research.

"The direction along which the magnetic moment of these magnetic atoms is pointed is determined by interactions with the other magnetic atoms in the material," Schiffer explains; "however, it has been almost impossible to look at the magnetic states of individual atoms, and existing chemical-synthesis techniques do not permit the strength of the interactions within these materials to be easily tuned." As a result, physicists have been able to study only the collective behavior of a group of frustrated magnetic atoms--not the specific behavior of the individual atoms.

Now, Schiffer and his colleagues have developed a new method to study the subtleties of frustration, which involves using "electron beam lithography" to build a magnetically frustrated material by sculpting arrays of hundreds of thousands of microscopic bar magnets, each only a few millionths of an inch in size. The samples were fabricated at the Penn State Nanofabrication Facility by Penn State graduate student Ruifang Wang. "Rather than relying on chemically synthesized materials whose magnetic atoms are pre-arranged, we decided to make our own frustrated system," Samarth says. "We tailored our system to mimic the magnetic structure of a specific set of materials that we wished to study, in which the frustrated magnetic atoms are arranged so that they behave in a manner exactly analogous to the hydrogen atoms in ice. Ruifang put in a truly heroic effort in getting the experiment to work." This set of materials is called "spin ice" since "spin" is another way of denoting the magnetism of an individual atom.

Because the systems made by Schiffer and his colleagues were created intentionally with a particular size and arrangement of individual magnets, the researchers were able to arrange the system so that the interactions between the magnets were frustrated in the same manner as in spin-ice materials. "Using a special microscope, we could see the direction in which each magnetic moment was pointing in this artificial spin ice, something which is impossible with either chemically synthesized frustrated magnetic materials or with ordinary ice," Schiffer says. "We also could change the spacing of the arrays, which allows us to tune the strength of the frustrated interactions."

The researchers say this work is an important step forward in the study of the nature of frustration in large networks. "Using such fabricated arrays, it now is possible to engineer frustrated systems to alter the strength of interactions, the geometry of the lattice, the type and number of defects, and other properties that impact the nature of frustration," Schiffer explains. These systems also allow scientists to probe the state of individual elements within a frustrated system. The interacting magnets also are relevant to modern magnetic-recording technology, which relies on increasingly tiny magnetic structures in order to fit more and more information onto smaller and smaller hard drives.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>