Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s most powerful microscope to be build at the Technical University of Denmark

20.01.2006


The Technical University of Denmark (DTU) is to receive the world’s most powerful microscope. The gift, amounting to almost 100 million Danish kroner, from The A. P. Møller and Chastine Mc-Kinney Møller Foundation will make it possible for DTU, in collaboration with a world leading supplier of microscopes, to develop a so-called Environmental Transmission Electron Microscope, which is five times more powerful than similar research microscopes currently in operation.



The gift from The A. P. Møller and Chastine Mc-Kinney Møller Foundation is the largest single private donation to research activities in Denmark ever made. According to DTU’s rector, Lars Pallesen, this donation will provide Denmark with unique facilities for research into nanotechnology.

“It is hardly an exaggeration to say that these facilities will place Denmark at the very centre of research in nanotechnology. This initiative will make it possible for us to carry out research at an absolutely elite level. Not only will it attract researchers to Denmark, it also gives exciting business perspectives for Denmark,” says Lars Pallesen.


Mr. Mærsk Mc-Kinney Møller, Chairman of the Foundation, explains why the Foundation wishes to contribute to Danish research into nanotechnology: ”We see great opportunities within this field – for young people as well as for visionary companies. It is, therefore, of high priority for us and for me personally that the Technical University of Denmark, being an elite institution, has facilities within this field. Hopefully this enables Denmark to become a leading nation in the technological development ahead”, says Mr. Mærsk Mc-Kinney Møller.

The researchers at DTU are very enthusiastic about the gift, which will open up unforeseen opportunities for nanotechnology. In short, the 180 researchers and 50 companies co-operating at the Center for Nanotechnology at DTU (NANO-DTU) will have the world’s most advanced microscope at their disposal.

”This newly developed microscope will make it possible for us to see details at the level of the atom in 3D. Its magnifying power is so great that the width of a human hair will be equivalent to that of a football field. It will be a giant leap forward for the field of materials research as we will be able to see what happens to the individual atoms when we make changes in materials and thereby give them new properties. We expect to be able to see resolutions of 0.07 nanometer which is equivalent to half a carbon atom”, says Professor Ib Chorkendorff from DTU.

In addition to the super microscope the Foundation will also donate three very advanced microscopes, a further two microscopes for educational use as well as a building to protect the sensitive equipment from vibrations, fluctuations in temperature and electrical noise.

The Center for Electron Nanoscopy (CEN-DTU) is expected to be ready in 2007.

Professor Ib Chorkendorff | alfa
Further information:
http://www.dtu.dk

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>