Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s most powerful microscope to be build at the Technical University of Denmark

20.01.2006


The Technical University of Denmark (DTU) is to receive the world’s most powerful microscope. The gift, amounting to almost 100 million Danish kroner, from The A. P. Møller and Chastine Mc-Kinney Møller Foundation will make it possible for DTU, in collaboration with a world leading supplier of microscopes, to develop a so-called Environmental Transmission Electron Microscope, which is five times more powerful than similar research microscopes currently in operation.



The gift from The A. P. Møller and Chastine Mc-Kinney Møller Foundation is the largest single private donation to research activities in Denmark ever made. According to DTU’s rector, Lars Pallesen, this donation will provide Denmark with unique facilities for research into nanotechnology.

“It is hardly an exaggeration to say that these facilities will place Denmark at the very centre of research in nanotechnology. This initiative will make it possible for us to carry out research at an absolutely elite level. Not only will it attract researchers to Denmark, it also gives exciting business perspectives for Denmark,” says Lars Pallesen.


Mr. Mærsk Mc-Kinney Møller, Chairman of the Foundation, explains why the Foundation wishes to contribute to Danish research into nanotechnology: ”We see great opportunities within this field – for young people as well as for visionary companies. It is, therefore, of high priority for us and for me personally that the Technical University of Denmark, being an elite institution, has facilities within this field. Hopefully this enables Denmark to become a leading nation in the technological development ahead”, says Mr. Mærsk Mc-Kinney Møller.

The researchers at DTU are very enthusiastic about the gift, which will open up unforeseen opportunities for nanotechnology. In short, the 180 researchers and 50 companies co-operating at the Center for Nanotechnology at DTU (NANO-DTU) will have the world’s most advanced microscope at their disposal.

”This newly developed microscope will make it possible for us to see details at the level of the atom in 3D. Its magnifying power is so great that the width of a human hair will be equivalent to that of a football field. It will be a giant leap forward for the field of materials research as we will be able to see what happens to the individual atoms when we make changes in materials and thereby give them new properties. We expect to be able to see resolutions of 0.07 nanometer which is equivalent to half a carbon atom”, says Professor Ib Chorkendorff from DTU.

In addition to the super microscope the Foundation will also donate three very advanced microscopes, a further two microscopes for educational use as well as a building to protect the sensitive equipment from vibrations, fluctuations in temperature and electrical noise.

The Center for Electron Nanoscopy (CEN-DTU) is expected to be ready in 2007.

Professor Ib Chorkendorff | alfa
Further information:
http://www.dtu.dk

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>