Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researcher sees big impact of little cracks

19.01.2006


This atom-by-atom simulation shows a crack spreading through a brittle material. First the crack creates a clean slice across the surface, but as it gains speed it starts to gyrate, and the crack’s path becomes increasingly uneven. Image/Markus J. Buehler, MIT


An MIT researcher’s atom-by-atom simulation of cracks forming and spreading may help explain how materials fail in nanoscale devices, airplanes and even in the Earth itself during a quake. This work, which could impact a wide range of scientific and engineering disciplines, appears in the Jan. 19 issue of Nature.

"Classical theories of crack dynamics are only valid in a small range of material behavior," said author Markus J. Buehler, principal investigator in the Atomistic Mechanics Modeling Group in MIT’s Department of Civil and Environmental Engineering. "Our results represent a major breakthrough in understanding how cracks propagate in a variety of brittle materials, and our theory helps explain experimental and computational observations that have been poorly understood so far."

Past experiments show that cracks start out slow, creating a straight, clean slice across a flat-as-a-mirror surface. As the crack gains speed, at a certain point it starts to gyrate like an out-of-control snake, leaving in its wake an increasingly rough, uneven surface that eventually creates a chaotic branching pattern.



Surprisingly, this phenomenon happens in many different classes of brittle materials, including glasses, ceramics, polymers and semiconductors, but no one has fully understood the physics behind it.

Buehler and Huajian Gao of the Max Planck Institute for Metals Research in Stuttgart, Germany, and now at Brown University, simulated the action of atoms to study how materials behave under extreme conditions. Using massively large-scale molecular dynamics simulations, they uncovered the physics behind fractures and formed a new theory of how cracks propagate in brittle materials.

The researchers discovered that making sense of conflicting studies requires thinking of the material’s behavior as hyperelastic, meaning the atomic bonds are close to the breaking point.

"Hyperelasticity, which stems from atoms interacting according to the laws of quantum mechanics, has been neglected in most existing fracture theories," Buehler said. "Our results suggest that it is key to unresolved experimental observations in dynamic fracture.

"An important consequence of hyperelasticity is that elastic stiffening behaviors such as those in rubbery materials can have a dramatic effect on the instability dynamics of cracks," Buehler said. The new study shows that cracks in stiffening materials can suppress the chaotic pattern of spreading cracks and move faster than the speed of sound while creating flat-as-a-mirror surfaces.

Elizabeth Thomson | MIT
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>