Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LISA and the search for Einstein’s waves

19.01.2006


Scientists from across the world came together in London on 12-13 January to review the scientific and technical status of the LISA mission, the world’s first gravitational wave observatory, at a meeting organised by the Royal Astronomical Society (RAS) and the Institute of Physics.



Scheduled for launch in 2016, LISA will be the largest scientific instrument ever constructed, consisting of three spacecraft, each separated by 5 million kilometres (3 million miles). Its task will be to detect the elusive gravitational waves which were predicted by Einstein’s Theory of General Relativity, published in 1916. To date, although astronomers have indirect evidence of their existence, none have yet been detected directly.

LISA will be one of the most challenging space science missions ever flown. In order to detect the passage of a gravitational wave, the distance between the spacecraft must be measured by laser beams to an accuracy of ten picometres, about one millionth of the diameter of a human hair!


Gravitational waves are emitted when very massive objects such as black holes spiral violently together or when neutron stars collide at high speed. These invisible waves squeeze and stretch spacetime as they travel to us from distant parts of the universe,

The waves travel from the source without absorption and this allows scientists to study objects at very great distances and the events that took place immediately after the birth of the Universe. Various models of the early universe predict gravitational wave emission during the first tiny fractions of a second, and if these can be detected by LISA scientists will learn a great deal about the processes active at that time.

The technology needed for gravitational wave detection in space is being developed in Europe and the US, with a major role being played by the UK. Groups at the Universities of Glasgow, Birmingham, Imperial College London and the Rutherford Appleton Laboratory have been working for over ten years to perfect the necessary instrumentation and a flight test of this hardware is planned for 2009 on a space mission called LISA Pathfinder.

In addition to the preparation of the advanced technology, 10 other UK Universities (Warwick, Oxford, Aberdeen, Lancaster, Cambridge, Southampton, Portsmouth, University College London, Nottingham and Cardiff) are currently working on predicting astronomical signals and testing data analysis methods ready for the data from LISA.

Speakers at the RAS-IOP meeting came from the US, Italy, Germany and many groups in the UK. To emphasise the UK support for the science goals of LISA, the meeting participants were welcomed by Professor Keith Mason, Chief Executive of PPARC who praised the scientific and technical challenges being addressed by the UK teams and pointed out that LISA fulfilled one of PPARC’s major science goals. The meeting was concluded by Professor David Southwood, the ESA Director of Science, who drew attention to the unique science that LISA would accomplish.

Prof. Mike Cruise | alfa
Further information:
http://www.ras.org.uk/
http://www.lisa.jpl.nasa.gov/
http://www.bham.ac.uk

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>