Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic battle creates Milky-Way sized tunnel

13.01.2006


A team of astronomers is announcing today that they have discovered a giant Milky Way-sized tunnel filled with high energy particles in a distant galaxy cluster. These new findings are of special interest to astronomers as they may provide the missing evolutionary link necessary to understand the cycle of birth and death, as well as the environmental impact, of radio jets which result from ravenous supermassive black holes within giant galaxies. The report is being presented to the American Astronomical Society meeting in Washington, DC, by Dr. Tracy Clarke of Interferometrics, Inc. in Herndon, VA, and the Naval Research Laboratory (NRL) in Washington, DC; along with collaborators Dr. Craig Sarazin of the University of Virginia in Charlottesville, VA; Dr. Elizabeth Blanton of Boston University in Boston, MA; Dr. Namir Kassim, also of NRL; and Dr. Doris Neumann of CEA in Saclay, France.

Using the Chandra X-ray Observatory to study the multi-million degree gas in the galaxy cluster Abell 2597, the scientists discovered an unusual X-ray tunnel large enough to fit the entire Milky Way galaxy inside. The cluster, located at a distance of roughly one billion light years, contains a tunnel in the hot gas, which measures nearly 110 thousand light years by 36 thousand light years in size. The tunnel, which appears to originate near the core of the central giant galaxy in the cluster, may be more than 200 million years old.

A constant battle is being waged in the central regions of clusters of galaxies. The hot gas invades the core of the cluster and feeds the supermassive black hole that is lurking there. As the black hole eats more and more, it becomes active and nearby material is funneled into powerful jets of highly energetic particles (so-called radio jets) outward into the hot gas. These relativistic jets, containing particles moving at close to the speed of light, carve out bubbles while they expand, pushing aside the hot gas. Like a poorly planned invasion, these jets cut off the fuel supply to the central black hole, leading to a temporary starvation. Without fuel to maintain the attack, the radio jets cease and the hot gas once again is able to invade the central region of the cluster and the battle begins again.



The new observations of a tunnel connecting from the central supermassive black hole to a distance nearly seven times the radio galaxy size in Abell 2597 suggest that the picture may be more complicated than previously thought. Past radio observations at a wavelength of roughly 4 cm, published in 1995 by Sarazin and collaborators, showed that this system was host to a small radio galaxy only 25 thousand light years across. Recently, Clarke and collaborators obtained new low frequency (90 cm wavelength) radio observations using the National Science Foundation’s Very Large Array (VLA), which shed new light on the violent history of the central radio galaxy and its connection to the X-ray tunnel. "Low frequency radio observations are sensitive to the oldest energetic particles thus giving us a means to step even further back in time and look into the past lives of radio galaxies," explains Dr. Clarke. These new observations revealed that the X-ray tunnel is filled with old particles, invisible at shorter wavelengths, which likely originate from the past outbursts of the black hole.

"X-ray and radio observations show that the central supermassive black holes in clusters are at war with the surrounding X-ray gas" says Dr. Sarazin. "In Abell 2597, the small young radio source being inflated by the supermassive black hole at the center of this cluster is the start of a new battle. The tunnel is like a scar left from previous battles, showing that this war has been going on for billions of years. The fact that the tunnel connects back to the supermassive black hole suggests that the black hole is trying the breach the clusters defenses in the same area of the gas where it has been successful in the past."

Astronomers are far from understanding the complex interactions between radio jets and the hot gas in galaxy clusters. Observations of new phenomena such as the tunnel in Abell 2597 are critical as they provide additional clues to how the battle is waged between the inward flow of the hot gas and the outward march of the radio jets. Further progress in the field will require sensitive observations at even longer wavelengths, but unfortunately the current suite of low frequency radio telescopes are already at their limits of sensitivity and resolution.

To address this shortcoming, astronomers at several institutions, collectively known as the Southwest Consortium, are contributing to an effort to build the world’s largest and most sensitive low-frequency telescope, called the Long Wavelength Array (LWA). The LWA will operate at wavelengths between 15 and 3.75 meters (or 20 and 80 Megahertz) and has the potential to revolutionize future studies of radio galaxies and galaxy clusters.

Current plans call for the LWA to be sited near the VLA in New Mexico. "Ironically the LWA will operate at the same frequencies at which Carl Jansky first discovered extra-terrestrial radio emission, thus representing a return to the very roots of radio astronomy," notes Dr. Namir Kassim, a radio astronomer in NRL’s Remote Sensing Division.

NRL Public Affairs | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>