Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil galaxy reveals clues to early universe

13.01.2006


The left hand panel shows a visible light image of Haro 11 acquired at the European Southern Observatories in Chile. North is up and East to the left. The right hand panel shows a false-color composite of the central part of the galaxy acquired with the Hubble Space Telescope. In this composite, a visible light image from the HST WFPC2 camera is coded in red, an ultraviolet light image from the HST ACS camera is coded in in green, and a spectral line emission image tracing neutral hydrogen (also from HST-ACS), excited by the kind of radiation detected by FUSE, is coded in blue. The ultraviolet light traces hot, young, stars, the visible light traces older, cooler, stars while the the line emission from hydrogen traces the interaction of energetic radiation with the gas in the galaxy. (The right hand panel is reproduced by permission of the AAS.)


A tiny galaxy has given astronomers a glimpse of a time when the first bright objects in the universe formed, ending the dark ages that followed the birth of the universe.

Astronomers from Sweden, Spain and the Johns Hopkins University used NASA’s Far Ultraviolet Spectroscopic Explorer (FUSE) satellite to make the first direct measurement of ionizing radiation leaking from a dwarf galaxy undergoing a burst of star formation. The result, which has ramifications for understanding how the early universe evolved, will help astronomers determine whether the first stars -- or some other type of object -- ended the cosmic dark age.

The team presented its results Jan. 12 at the American Astronomical Society’s 207th meeting in Washington, D.C.



Considered by many astronomers to be relics from an early stage of the universe, dwarf galaxies are small, very faint galaxies containing a large fraction of gas and relatively few stars. According to one model of galaxy formation, many of these smaller galaxies merged to build up today’s larger ones. If that is true, any dwarf galaxies observed now can be thought of as "fossils" that managed to survive -- without significant changes -- from an earlier period.

Led by Nils Bergvall of the Astronomical Observatory in Uppsala, Sweden, the team observed a small galaxy, known as Haro 11, which is located about 281 million light years away from Earth in the southern constellation of Sculptor. The team’s analysis of FUSE data produced an important result: between 4 percent and 10 percent of the ionizing radiation produced by the hot stars in Haro 11 is able to escape into intergalactic space.

Ionization is the process by which atoms and molecules are stripped of electrons and converted to positively charged ions. The history of the ionization level is important to understanding the evolution of structures in the early universe, because it determines how easily stars and galaxies can form, according to B-G Andersson, a research scientist in the Henry A. Rowland Department of Physics and Astronomy at Johns Hopkins and a member of the FUSE team.

"The more ionized a gas becomes, the less efficiently it can cool. The cooling rate in turn controls the ability of the gas to form denser structures, such as stars and galaxies," Andersson said. The hotter the gas, the less likely it is for structures to form, he said.

The ionization history of the universe therefore reveals when the first luminous objects formed, and when the first stars began to shine.

The Big Bang occurred about 13.7 billion years ago. At that time, the infant universe was too hot for light to shine. Matter was completely ionized: atoms were broken up into electrons and atomic nuclei, which scatter light like fog. As it expanded and then cooled, matter combined into neutral atoms of some of the lightest elements. The imprint of this transition today is seen as cosmic microwave background radiation.

The present universe is, however, predominantly ionized; astronomers generally agree that this reionization occurred between 12.5 and 13 billion years ago, when the first large-scale galaxies and galaxy clusters were forming. The details of this ionization are still unclear, but are of intense interest to astronomers studying these so-called "dark ages" of the universe.

Astronomers are unsure if the first stars or some other type of object ended those dark ages, but FUSE observations of "Haro 11" provide a clue.

The observations also help increase understanding of how the universe became reionized. According to the team, likely contributors include the intense radiation generated as matter fell into black holes that formed what we now see as quasars and the leakage of radiation from regions of early star formation. But until now, direct evidence for the viability of the latter mechanism has not been available.

"This is the latest example where the FUSE observation of a relatively nearby object holds important ramifications for cosmological questions," said Dr. George Sonneborn, NASA/FUSE Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

Lisa De Nike | EurekAlert!
Further information:
http://www.jhu.edu
http://www.jhu.edu/news/home06/jan06/haro.html
http://fuse.pha.jhu.edu

More articles from Physics and Astronomy:

nachricht New proton record: Researchers measure magnetic moment with greatest possible precision
24.11.2017 | Johannes Gutenberg-Universität Mainz

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>