Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil galaxy reveals clues to early universe

13.01.2006


The left hand panel shows a visible light image of Haro 11 acquired at the European Southern Observatories in Chile. North is up and East to the left. The right hand panel shows a false-color composite of the central part of the galaxy acquired with the Hubble Space Telescope. In this composite, a visible light image from the HST WFPC2 camera is coded in red, an ultraviolet light image from the HST ACS camera is coded in in green, and a spectral line emission image tracing neutral hydrogen (also from HST-ACS), excited by the kind of radiation detected by FUSE, is coded in blue. The ultraviolet light traces hot, young, stars, the visible light traces older, cooler, stars while the the line emission from hydrogen traces the interaction of energetic radiation with the gas in the galaxy. (The right hand panel is reproduced by permission of the AAS.)


A tiny galaxy has given astronomers a glimpse of a time when the first bright objects in the universe formed, ending the dark ages that followed the birth of the universe.

Astronomers from Sweden, Spain and the Johns Hopkins University used NASA’s Far Ultraviolet Spectroscopic Explorer (FUSE) satellite to make the first direct measurement of ionizing radiation leaking from a dwarf galaxy undergoing a burst of star formation. The result, which has ramifications for understanding how the early universe evolved, will help astronomers determine whether the first stars -- or some other type of object -- ended the cosmic dark age.

The team presented its results Jan. 12 at the American Astronomical Society’s 207th meeting in Washington, D.C.



Considered by many astronomers to be relics from an early stage of the universe, dwarf galaxies are small, very faint galaxies containing a large fraction of gas and relatively few stars. According to one model of galaxy formation, many of these smaller galaxies merged to build up today’s larger ones. If that is true, any dwarf galaxies observed now can be thought of as "fossils" that managed to survive -- without significant changes -- from an earlier period.

Led by Nils Bergvall of the Astronomical Observatory in Uppsala, Sweden, the team observed a small galaxy, known as Haro 11, which is located about 281 million light years away from Earth in the southern constellation of Sculptor. The team’s analysis of FUSE data produced an important result: between 4 percent and 10 percent of the ionizing radiation produced by the hot stars in Haro 11 is able to escape into intergalactic space.

Ionization is the process by which atoms and molecules are stripped of electrons and converted to positively charged ions. The history of the ionization level is important to understanding the evolution of structures in the early universe, because it determines how easily stars and galaxies can form, according to B-G Andersson, a research scientist in the Henry A. Rowland Department of Physics and Astronomy at Johns Hopkins and a member of the FUSE team.

"The more ionized a gas becomes, the less efficiently it can cool. The cooling rate in turn controls the ability of the gas to form denser structures, such as stars and galaxies," Andersson said. The hotter the gas, the less likely it is for structures to form, he said.

The ionization history of the universe therefore reveals when the first luminous objects formed, and when the first stars began to shine.

The Big Bang occurred about 13.7 billion years ago. At that time, the infant universe was too hot for light to shine. Matter was completely ionized: atoms were broken up into electrons and atomic nuclei, which scatter light like fog. As it expanded and then cooled, matter combined into neutral atoms of some of the lightest elements. The imprint of this transition today is seen as cosmic microwave background radiation.

The present universe is, however, predominantly ionized; astronomers generally agree that this reionization occurred between 12.5 and 13 billion years ago, when the first large-scale galaxies and galaxy clusters were forming. The details of this ionization are still unclear, but are of intense interest to astronomers studying these so-called "dark ages" of the universe.

Astronomers are unsure if the first stars or some other type of object ended those dark ages, but FUSE observations of "Haro 11" provide a clue.

The observations also help increase understanding of how the universe became reionized. According to the team, likely contributors include the intense radiation generated as matter fell into black holes that formed what we now see as quasars and the leakage of radiation from regions of early star formation. But until now, direct evidence for the viability of the latter mechanism has not been available.

"This is the latest example where the FUSE observation of a relatively nearby object holds important ramifications for cosmological questions," said Dr. George Sonneborn, NASA/FUSE Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

Lisa De Nike | EurekAlert!
Further information:
http://www.jhu.edu
http://www.jhu.edu/news/home06/jan06/haro.html
http://fuse.pha.jhu.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>