Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil galaxy reveals clues to early universe

13.01.2006


The left hand panel shows a visible light image of Haro 11 acquired at the European Southern Observatories in Chile. North is up and East to the left. The right hand panel shows a false-color composite of the central part of the galaxy acquired with the Hubble Space Telescope. In this composite, a visible light image from the HST WFPC2 camera is coded in red, an ultraviolet light image from the HST ACS camera is coded in in green, and a spectral line emission image tracing neutral hydrogen (also from HST-ACS), excited by the kind of radiation detected by FUSE, is coded in blue. The ultraviolet light traces hot, young, stars, the visible light traces older, cooler, stars while the the line emission from hydrogen traces the interaction of energetic radiation with the gas in the galaxy. (The right hand panel is reproduced by permission of the AAS.)


A tiny galaxy has given astronomers a glimpse of a time when the first bright objects in the universe formed, ending the dark ages that followed the birth of the universe.

Astronomers from Sweden, Spain and the Johns Hopkins University used NASA’s Far Ultraviolet Spectroscopic Explorer (FUSE) satellite to make the first direct measurement of ionizing radiation leaking from a dwarf galaxy undergoing a burst of star formation. The result, which has ramifications for understanding how the early universe evolved, will help astronomers determine whether the first stars -- or some other type of object -- ended the cosmic dark age.

The team presented its results Jan. 12 at the American Astronomical Society’s 207th meeting in Washington, D.C.



Considered by many astronomers to be relics from an early stage of the universe, dwarf galaxies are small, very faint galaxies containing a large fraction of gas and relatively few stars. According to one model of galaxy formation, many of these smaller galaxies merged to build up today’s larger ones. If that is true, any dwarf galaxies observed now can be thought of as "fossils" that managed to survive -- without significant changes -- from an earlier period.

Led by Nils Bergvall of the Astronomical Observatory in Uppsala, Sweden, the team observed a small galaxy, known as Haro 11, which is located about 281 million light years away from Earth in the southern constellation of Sculptor. The team’s analysis of FUSE data produced an important result: between 4 percent and 10 percent of the ionizing radiation produced by the hot stars in Haro 11 is able to escape into intergalactic space.

Ionization is the process by which atoms and molecules are stripped of electrons and converted to positively charged ions. The history of the ionization level is important to understanding the evolution of structures in the early universe, because it determines how easily stars and galaxies can form, according to B-G Andersson, a research scientist in the Henry A. Rowland Department of Physics and Astronomy at Johns Hopkins and a member of the FUSE team.

"The more ionized a gas becomes, the less efficiently it can cool. The cooling rate in turn controls the ability of the gas to form denser structures, such as stars and galaxies," Andersson said. The hotter the gas, the less likely it is for structures to form, he said.

The ionization history of the universe therefore reveals when the first luminous objects formed, and when the first stars began to shine.

The Big Bang occurred about 13.7 billion years ago. At that time, the infant universe was too hot for light to shine. Matter was completely ionized: atoms were broken up into electrons and atomic nuclei, which scatter light like fog. As it expanded and then cooled, matter combined into neutral atoms of some of the lightest elements. The imprint of this transition today is seen as cosmic microwave background radiation.

The present universe is, however, predominantly ionized; astronomers generally agree that this reionization occurred between 12.5 and 13 billion years ago, when the first large-scale galaxies and galaxy clusters were forming. The details of this ionization are still unclear, but are of intense interest to astronomers studying these so-called "dark ages" of the universe.

Astronomers are unsure if the first stars or some other type of object ended those dark ages, but FUSE observations of "Haro 11" provide a clue.

The observations also help increase understanding of how the universe became reionized. According to the team, likely contributors include the intense radiation generated as matter fell into black holes that formed what we now see as quasars and the leakage of radiation from regions of early star formation. But until now, direct evidence for the viability of the latter mechanism has not been available.

"This is the latest example where the FUSE observation of a relatively nearby object holds important ramifications for cosmological questions," said Dr. George Sonneborn, NASA/FUSE Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md.

Lisa De Nike | EurekAlert!
Further information:
http://www.jhu.edu
http://www.jhu.edu/news/home06/jan06/haro.html
http://fuse.pha.jhu.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>