Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-wavelength images help astronomers study star birth, death

12.01.2006


Black and white reproductions of Vincent van Gogh’s "The Starry Night" lack the beauty and depth of the original oil painting. In a similar fashion, images of stars and galaxies composed of a single wavelength band cannot convey the wealth of information now accessible to astronomers.


This false-color image shows infrared (red), optical (green), and X-ray (blue) views of the N49 supernova remnant. This object, the remains of an exploded star, has million-degree gas in the center, with much cooler gas at the outer parts of the remnant. Credit: NASA (SSC/HST/CXC), U.Illinois (R.Williams & Y.-H.Chu)


This false-color image shows infrared (red), optical (green), and X-ray (blue) views of the large star-forming complex N51. The warm ionized gas is shown in green, the hot ionized gas is in blue, and the proto-stars are primarily in red. Credit: NASA/SSC/MCELS/ESA/U.Illinois (Y.-H. Chu and R. A. Gruendl)



In recent years, a number of ground-based optical and radio surveys of the Large and Small Magellanic Clouds -- Earth’s nearest neighboring galaxies -- have become available. New composite images of optical, radio, infrared, ultraviolet and X-ray wavelengths are giving astronomers at the University of Illinois at Urbana-Champaign a clearer picture of the birth, life and death of massive stars, and their effect on the gas and dust of the interstellar medium surrounding them.

From their birth to their death, massive stars have a tremendous impact on their galactic surroundings. While alive, these stars energize and enrich the interstellar medium with their strong ultraviolet radiation and their fast stellar winds. As they die, shock waves from their death throes inject vast quantities of mechanical energy into the interstellar medium and can lead to the formation of future stars.


"Comparing images at different wavelengths lets us create a more complete picture, rather than seeing only a few features in isolation," said You-Hua Chu, chair of the astronomy department at Illinois. "Using multi-spectral data sets, we can examine the physical structure of the interstellar medium and study the conditions that lead to star formation."

Massive stars interact with the interstellar medium in many ways. Their fast stellar winds and supernova blasts can sweep up the surrounding medium into expanding shells filled with hot gas.

"The expanding shells produce conditions that may start a new wave of star births," said Robert Gruendl, an Illinois astronomer who uses Spitzer Space Telescope observations to search for proto-stars. "The combination of X-ray, optical and infrared observations allow us to determine whether the pressure of the hot gas or compression by a passing shock wave is responsible for triggering star formation."

In related work, Illinois astronomer Rosa Williams has added data from a new wavelength regime to her growing database on stellar graveyards in the Magellanic Clouds. Comparing infrared images obtained with the Spitzer Space Telescope, Williams explored the distribution of matter caught in the expanding shells of supernova remnants.

"We expected significant infrared emission to be generated by dust particles," Williams said. "Instead, most of the emission from these remnants came from heated gas."

Strong ultraviolet radiation from nearby star-forming regions may have ionized the gas and torn apart the dust particles consisting of hydrocarbon molecules, Williams said. "Other dust particles could have been shattered by shock waves from the supernova."

To solve the missing dust mystery, Williams said, "We are investigating the nature and amount of dust in regions surrounding the supernova remnants to see whether the deficiency in dust is inherent in the environment or created by the remnant."

Chu, Gruendl and Williams will present their latest findings at the American Astronomical Society meeting in Washington, D.C., on Wednesday (Jan. 11).

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>