Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find black hole’s ’point of no return’

11.01.2006


MIT/Harvard work reported at American Astronomical Society


Animation of a neutron star X-ray burst. Credit: NASA/Dana Berry



Scientists have found new evidence that black holes are performing the disappearing acts for which they are known.

A team from MIT and Harvard has found that a certain type of X-ray explosion common on neutron stars is never seen around their black hole cousins, as if the gas that fuels these explosions has vanished into a void.


This is strong evidence, the team said, for the existence of a theoretical border around a black hole called an event horizon, a point from beyond which nothing, not even light, can escape.

Ron Remillard of the Kavli Institute for Astrophysics and Space Research at MIT led the analysis and is discussing his team’s result Jan. 9 at a press conference at the 207th meeting of the American Astronomical Society in Washington, D.C. His colleagues are Dacheng Lin of MIT and Randall Cooper and Ramesh Narayan of the Harvard-Smithsonian Center for Astrophysics in Cambridge.

The scientists studied a complete sample of transient X-ray sources detected with NASA’s Rossi X-ray Timing Explorer during the last nine years. They detected 135 X-ray bursts from the 13 sources believed to be neutron stars, but none from the 18 suspected black holes.

Gas released by a nearby star can accumulate on the hard surface of a neutron star, and it will eventually erupt in a thermonuclear explosion. The more massive compact objects in this study suspected of being black holes appeared to have no surface. Gas falling toward the black hole seems to disappear.

"Event horizons are invisible by definition, so it seems impossible to prove their existence," said Remillard. "Yet by looking at dense objects that pull in gas, we can infer whether that gas crashes and accumulates onto a hard surface or just quietly vanishes. For the group of suspected black holes we studied, there is a complete absence of surface explosions called X-ray bursts."

A black hole forms when a very massive star runs out of fuel. Without energy to support its mass, the star implodes. If the star is more than 25 times more massive than our sun, the core will collapse to a point of infinite density with no surface. Within a boundary of about 50 miles from the black hole center, gravity is so strong that not even light can escape its pull. This boundary is the theoretical event horizon.

Stars of about 10 to 25 solar masses will collapse into compact spheres about 10 miles across, called neutron stars. These objects have a hard surface and no event horizon.

Black holes and their neutron star cousins are sometimes located in binary systems, orbiting a relatively normal star companion. Gas from these stars, lured by strong gravity, can flow toward the compact object periodically. This process, called accretion, releases large amounts of energy, predominantly in the form of X-rays.

Gas can accumulate on a neutron star surface, and when conditions are ripe, the gas will ignite in a thermonuclear explosion that is visible as a one-minute event called a Type I X-ray burst. The suspected black holes -- that is, the more massive types of compact objects in this study -- behave as if they have no surface and are located behind event horizons.

The idea of using the absence of X-ray bursts to confirm the presence of event horizons in black holes was proposed in 2002 by Harvard’s Narayan and Jeremy Heyl of the University of British Columbia in Vancouver.

The Rossi Explorer, launched on Dec. 30, 1995, is operated by NASA Goddard Space Flight Center in Greenbelt, Md.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu
http://universe.nasa.gov/press/event_horizon/event_horizon.html

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>