Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism flicks switch on ’dark excitons’

11.01.2006


Tests at leading magnetic labs shed light on nanotube mystery



In new experimental research appearing in this week’s issue of Physical Review Letters, a Rice University-led team of nanoscientists and electrical engineers has flipped the switch on ’dark excitons’ in carbon nanotubes by placing them inside a strong magnetic field.

The research offers new insight into the fundamental optical properties of semiconducting nanotubes, hollow straw-like molecules of pure carbon. Leading computing companies would like to use nanotubes as optical components in next-generation microchips that are faster, more powerful and more energy efficient.


"Single-walled carbon nanotubes offer engineers the intriguing possibility of building chips where electrical inputs can be converted into light and moved about the chip as optical signals rather than electrical signals," said lead researcher Junichiro Kono, associate professor of electrical and computer engineering at Rice. "Thus far, the poor optical performance of nanotubes -- in some cases as few as one in 100,000 incoming photons causes a fluorescent emission -- has prevented engineers from developing the technology for applications."

Kono said the new research may help scientists formulate new tests to answer some of the most perplexing questions about the optical properties of nanotubes. For example, scientists are currently debating whether low fluorescence efficiencies in nanotubes arise from the intrinsic physical structure of nanotubes or from external factors like structural defects and impurities. Some of the leading theories have the missing light disappearing into "dark" excitons – odd quantum pairings of electrons and electron "holes" that are forbidden by quantum rules from fluorescing. The new magnetic method of overcoming this dark exciton effect could be used to probe the intrinsic properties of nanotubes and help settle the debate.

The team tested materials in some of the world’s most powerful magnetic fields. Experiments were conducted at both the Laboratoire National des Champs Magnétiques Pulsés in Toulouse, France, and at the National High Magnetic Field Laboratory at New Mexico’s Los Alamos National Laboratory.

"We hope that our experimental methods will help better inform theorists and ultimately aid in the development of new devices with far superior functions than those based on existing technology," said Sasa Zaric, whose doctoral dissertation will be based on the work.

Nanotubes are a fraction of the size of transistors used in today’s best microchips. As electronic components, nanotubes could reduce power demands and heating in next-generation chips. But as optical components they offer far more. The replacement of copper cables with fiberoptics revolutionized the volume and speed of data transmission in the telecom industry 20 years ago, and the parallels in microchips are tantalizing.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>