Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism flicks switch on ’dark excitons’

11.01.2006


Tests at leading magnetic labs shed light on nanotube mystery



In new experimental research appearing in this week’s issue of Physical Review Letters, a Rice University-led team of nanoscientists and electrical engineers has flipped the switch on ’dark excitons’ in carbon nanotubes by placing them inside a strong magnetic field.

The research offers new insight into the fundamental optical properties of semiconducting nanotubes, hollow straw-like molecules of pure carbon. Leading computing companies would like to use nanotubes as optical components in next-generation microchips that are faster, more powerful and more energy efficient.


"Single-walled carbon nanotubes offer engineers the intriguing possibility of building chips where electrical inputs can be converted into light and moved about the chip as optical signals rather than electrical signals," said lead researcher Junichiro Kono, associate professor of electrical and computer engineering at Rice. "Thus far, the poor optical performance of nanotubes -- in some cases as few as one in 100,000 incoming photons causes a fluorescent emission -- has prevented engineers from developing the technology for applications."

Kono said the new research may help scientists formulate new tests to answer some of the most perplexing questions about the optical properties of nanotubes. For example, scientists are currently debating whether low fluorescence efficiencies in nanotubes arise from the intrinsic physical structure of nanotubes or from external factors like structural defects and impurities. Some of the leading theories have the missing light disappearing into "dark" excitons – odd quantum pairings of electrons and electron "holes" that are forbidden by quantum rules from fluorescing. The new magnetic method of overcoming this dark exciton effect could be used to probe the intrinsic properties of nanotubes and help settle the debate.

The team tested materials in some of the world’s most powerful magnetic fields. Experiments were conducted at both the Laboratoire National des Champs Magnétiques Pulsés in Toulouse, France, and at the National High Magnetic Field Laboratory at New Mexico’s Los Alamos National Laboratory.

"We hope that our experimental methods will help better inform theorists and ultimately aid in the development of new devices with far superior functions than those based on existing technology," said Sasa Zaric, whose doctoral dissertation will be based on the work.

Nanotubes are a fraction of the size of transistors used in today’s best microchips. As electronic components, nanotubes could reduce power demands and heating in next-generation chips. But as optical components they offer far more. The replacement of copper cables with fiberoptics revolutionized the volume and speed of data transmission in the telecom industry 20 years ago, and the parallels in microchips are tantalizing.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>