Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monster black holes grow after galactic mergers

11.01.2006


Two new studies show the ’eating habits’ of black holes at the center of young galaxies



An analysis of the Hubble Space Telescope’s deepest view of the universe offers compelling evidence that monster black holes in the centers of galaxies were not born big but grew over time through repeated galactic mergers.

"By studying distant galaxies in the Hubble Ultra Deep Field (HUDF), we have the first statistical evidence that supermassive black-hole growth is linked to the process of galaxy assembly," said Arizona State University astronomer Rogier Windhorst, who is a member of the two teams that conducted the analysis. "Black holes grow by drawing in stars, gas and dust. These morsels come more plentifully within their reach when galaxies merge."


The two teams will present their results in a press conference on Jan. 10 at the 207th meeting of the American Astronomical Society in Washington, D.C.

The HUDF studies also confirm the predictions of recent computer simulations by Lars Hernquist, Philip Hopkins, Tiziana di Matteo and Volker Springel of the Harvard Smithsonian Center for Astrophysics in Cambridge, Mass., that newly merging galaxies are enshrouded in so much dust that astronomers cannot see the black-hole feeding frenzy. The computer simulations, as supported by Hubble, suggest that it takes hundreds of millions to a billion years before enough dust clears so that astronomers can see the black holes feasting on stars and gas from the merger. The telltale sign that black holes are dining is seeing light from galaxies that vary with time.

The two HUDF teams believe they are seeing two distinct phases in galaxy evolution: the first phase -- the tadpole stage -- representing the early-merging systems where central black holes are still enshrouded in dust, and a much later "variable-object phase," in which the merged system has cleared out enough gas for the inner accretion disk around the black hole to become visible.

"The fact that these phases were almost entirely separate was a surprise, because it is commonly believed that galaxy mergers and central black-hole activity are closely related," Windhorst explained. "Our nearby universe, including the Milky Way galaxy in which we live, has mature galaxies, but in order to understand how they formed and evolved, we must study them over time. HUDF provides an actual look back in time to see snapshots of early galaxies so that we can study them when they were young."

A link between the growth of galaxies through mergers and the feeding of the central black holes has long been suspected. The evidence, however, has been inconclusive for many years.

"The HUDF has provided very high-quality information," said Seth Cohen of Arizona State University and leader of one of the teams. "It is the first data we could use to test this theory, since it allowed us to study about 5,000 distant galaxies over a period of four months."

The HUDF observations have now shed light on how the growth of monster black holes kept pace with that of galaxies. A team of astronomers, led by Amber Straughn of Arizona State University, searched the HUDF for "tadpole galaxies," so-called because they have bright knots and tails caused by mergers. These features are produced when the galaxies lose their gravitational grip on their stars, spewing some of those stars into space. The team found about 165 tadpole galaxies, representing about 6 percent of the 2,700 galaxies in the tadpole galaxy study.

"To our surprise, however, these tadpole objects did not show any fluctuation in brightness," Straughn said. "The flickering light -- when it is present -- comes from the material swirling around an accretion disk surrounding a black hole. The material is heated and begins to glow. As it spirals down toward the black hole, it can rapidly change in brightness. This study of tadpole galaxies suggests that black holes in newly merging galaxies are enshrouded in dust, and therefore, we cannot see them accreting material."

Cohen’s team studied the brightness of about 4,600 HUDF objects over several weeks to many months. The Hubble team found that about 45 (non-tadpole) objects, representing 1 percent of the faint galaxies in the study, fluctuated significantly in brightness over time. This result indicates that the galaxies probably contain supermassive black holes that are feeding on stars or gas.

"A black hole’s typical mealtime lasts at least a few dozen million years," Windhorst said. "This is equivalent to black holes spending no more than 15 minutes per day eating all their food -- a veritable fast food diet."

The HUDF analysis also reinforces previous Hubble telescope studies of monster black holes in the centers of nearby, massive galaxies. Those studies showed a close relationship between the mass of a galaxy’s "central bulge" of stars and that of the central black hole. Galaxies today have central black holes with masses ranging from a few million to a few billion solar masses.

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu
http://hubblesite.org/news/2006/04

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

LZH showcases laser material processing of tomorrow at the LASYS 2018

22.05.2018 | Trade Fair News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>