Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monster black holes grow after galactic mergers

11.01.2006


Two new studies show the ’eating habits’ of black holes at the center of young galaxies



An analysis of the Hubble Space Telescope’s deepest view of the universe offers compelling evidence that monster black holes in the centers of galaxies were not born big but grew over time through repeated galactic mergers.

"By studying distant galaxies in the Hubble Ultra Deep Field (HUDF), we have the first statistical evidence that supermassive black-hole growth is linked to the process of galaxy assembly," said Arizona State University astronomer Rogier Windhorst, who is a member of the two teams that conducted the analysis. "Black holes grow by drawing in stars, gas and dust. These morsels come more plentifully within their reach when galaxies merge."


The two teams will present their results in a press conference on Jan. 10 at the 207th meeting of the American Astronomical Society in Washington, D.C.

The HUDF studies also confirm the predictions of recent computer simulations by Lars Hernquist, Philip Hopkins, Tiziana di Matteo and Volker Springel of the Harvard Smithsonian Center for Astrophysics in Cambridge, Mass., that newly merging galaxies are enshrouded in so much dust that astronomers cannot see the black-hole feeding frenzy. The computer simulations, as supported by Hubble, suggest that it takes hundreds of millions to a billion years before enough dust clears so that astronomers can see the black holes feasting on stars and gas from the merger. The telltale sign that black holes are dining is seeing light from galaxies that vary with time.

The two HUDF teams believe they are seeing two distinct phases in galaxy evolution: the first phase -- the tadpole stage -- representing the early-merging systems where central black holes are still enshrouded in dust, and a much later "variable-object phase," in which the merged system has cleared out enough gas for the inner accretion disk around the black hole to become visible.

"The fact that these phases were almost entirely separate was a surprise, because it is commonly believed that galaxy mergers and central black-hole activity are closely related," Windhorst explained. "Our nearby universe, including the Milky Way galaxy in which we live, has mature galaxies, but in order to understand how they formed and evolved, we must study them over time. HUDF provides an actual look back in time to see snapshots of early galaxies so that we can study them when they were young."

A link between the growth of galaxies through mergers and the feeding of the central black holes has long been suspected. The evidence, however, has been inconclusive for many years.

"The HUDF has provided very high-quality information," said Seth Cohen of Arizona State University and leader of one of the teams. "It is the first data we could use to test this theory, since it allowed us to study about 5,000 distant galaxies over a period of four months."

The HUDF observations have now shed light on how the growth of monster black holes kept pace with that of galaxies. A team of astronomers, led by Amber Straughn of Arizona State University, searched the HUDF for "tadpole galaxies," so-called because they have bright knots and tails caused by mergers. These features are produced when the galaxies lose their gravitational grip on their stars, spewing some of those stars into space. The team found about 165 tadpole galaxies, representing about 6 percent of the 2,700 galaxies in the tadpole galaxy study.

"To our surprise, however, these tadpole objects did not show any fluctuation in brightness," Straughn said. "The flickering light -- when it is present -- comes from the material swirling around an accretion disk surrounding a black hole. The material is heated and begins to glow. As it spirals down toward the black hole, it can rapidly change in brightness. This study of tadpole galaxies suggests that black holes in newly merging galaxies are enshrouded in dust, and therefore, we cannot see them accreting material."

Cohen’s team studied the brightness of about 4,600 HUDF objects over several weeks to many months. The Hubble team found that about 45 (non-tadpole) objects, representing 1 percent of the faint galaxies in the study, fluctuated significantly in brightness over time. This result indicates that the galaxies probably contain supermassive black holes that are feeding on stars or gas.

"A black hole’s typical mealtime lasts at least a few dozen million years," Windhorst said. "This is equivalent to black holes spending no more than 15 minutes per day eating all their food -- a veritable fast food diet."

The HUDF analysis also reinforces previous Hubble telescope studies of monster black holes in the centers of nearby, massive galaxies. Those studies showed a close relationship between the mass of a galaxy’s "central bulge" of stars and that of the central black hole. Galaxies today have central black holes with masses ranging from a few million to a few billion solar masses.

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu
http://hubblesite.org/news/2006/04

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>