Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’S Chandra finds black holes stirring up galaxies

11.01.2006


Black holes are creating havoc in unsuspected places, according to a new study of images of elliptical galaxies made by NASA’s Chandra X-ray Observatory. The discovery of far-reaching explosive activity, due to giant central black holes in these old galaxies, was a surprise to astronomers.



The Chandra data revealed an unsuspected turmoil in elliptical galaxies that belies their calm appearance in optical light. Astronomers believe massive clouds of hot gas in these galaxies have been stirred up by intermittent explosive activity from centrally located super-massive black holes.

"This is another example of how valuable it is to observe the universe at different wavelengths besides just the traditional optical wavelengths," said NASA’s Chandra Program Scientist Wilt Sanders. "Without these X-ray and radio observations, we wouldn’t know these apparently static galaxies in reality are still evolving due to the interaction with their central black holes."


These results came from an analysis of 56 elliptical galaxies in the Chandra data archive by associate professor Thomas Statler and doctoral candidate Steven Diehl, both of the Physics and Astronomy department at the Ohio University, Athens, Ohio. Contrary to expectations, they found the distribution of the multimillion-degree gas in these galaxies differed markedly from that of the stars.

"Most elliptical galaxies have traditionally been considered to be quiet places, like placid lakes," Statler said. "Our results show these galaxies are a lot stormier than we thought."

Previous X-ray studies have shown elliptical galaxies contain multimillion degree gas whose mass is a few percent of the stars in it. Except for rare cases, violent activity in elliptical galaxies was thought to have stopped long ago. It was expected the hot gas would have settled into an equilibrium shape similar to, but rounder, than the stars. High angular resolution imaging observations by Chandra indicate otherwise.

"We found the distribution of hot gas has no correlation with the optical shape," Diehl said. "Something is definitely making a mess there, and pumping energy equivalent to a supernova every century into the gas."

Although supernovae are a possible energy source, a more probable cause was identified. The scientists detected a correlation between the shape of the hot gas clouds and the power produced at radio wavelengths by high-energy electrons. This power output can be traced back to the centers of the galaxies, where super-massive black holes are located.

Repetitive explosive activity fueled by the in-fall of gas into central black holes is known to occur in giant elliptical galaxies located in galaxy clusters. Statler and Diehl’s analysis indicates the same phenomena are also occurring in isolated elliptical galaxies.

"These results are part of an emerging picture that shows the impact of super-massive black holes on their environment is far more pervasive than previously thought," Statler said.

Megan Watzke | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>