Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping Orion’s winds

11.01.2006


For the past few months, Bob O’Dell has been mapping the winds blowing in the Orion Nebula, the closest stellar nursery similar to the one in which the sun was born.

New data from the Hubble Orion Heritage Program, a major observational effort by the Hubble Space Telescope in 2004 and 2005, have given the Vanderbilt astronomer the information he needs to measure the stellar winds with unprecedented detail, and he reported his early results on Jan. 11 at the annual meeting of the American Astronomical Society in Washington D.C.

"Determining how stellar winds interact with the ambient material in stellar nurseries like Orion is a critical factor in understanding the process of star creation," says O’Dell, distinguished research professor of astrophysics and an international authority on Orion.



All stars, including the Sun, give off a stream of particles as they burn. In young, hot stars like those that form the "Trapezium" at the heart of Orion this stream of particles is millions of times more dense and energetic than the solar wind. Newborn stars, which are still shrouded in thick veils of dust and gas, often eject gas and dust from their polar regions in narrow jets, rather than broadcasting them outward in all directions. When these stellar winds impact floating clouds of dust and gas, they produce shock waves that erode and shape the clouds in a fashion similar to the way in which terrestrial winds sculpt sand dunes. When they are strong enough, such shock waves also can compress the free-floating clouds of dust and gas, triggering the formation of new stars.

O’Dell is using these shock waves as celestial "wind socks" to plot the direction of these winds in different parts of the nebula. By back-tracking older, more distant shock waves to their likely points of origin, the astronomer can also get an idea of how long major currents have been flowing.

"When you look closely enough, you see that the nebula is filled with hundreds of visible shock waves," the astronomer says.

In his analysis, O’Dell has identified three different types of shock waves:

  • Bow-shocks are stationary shock waves that are formed by the collision of two steady winds and are excellent indicators of wind direction. They are present near the hottest stars in the center of the nebula where they show winds flowing outward at velocities of thousands of kilometers per second. They are also present in the outer nebula where they are produced by low velocity stellar winds of tens of kilometers per second.
  • Jet-driven shocks are produced when narrow streams of gas and particles traveling at hundreds of kilometers per second pass through gas that is relatively stationary. There are many shockwaves of this type in the nebula that are produced by jets of material ejected by newly formed stars.
  • Warped shocks are jet-driven shocks located in areas where the ambient gas is not stationary but is moving in a cross current. This bends the jets and shocks into bow-like shapes.

Using these markers, the astronomer has mapped the outflow from two of the three regions of star formation in the nebula. Both of these regions, labeled BN-KL and Orion-South, are located behind the glowing region of the nebula where the light from the central stars ionizes the outer layers of the parent molecular cloud. The specific objects that are producing these winds in the two regions are not visible to optical telescopes but they stand out as hot spots in infrared images.

By tracking back the farthest shockwaves produced by these outflows, O’Dell has established that the winds blowing from BN-KL have been doing so for 900 to 1,100 years, while those from Orion-South have been going on for 200 to 1,500 years. These observations were made during 104 orbits of the Hubble and provide the most comprehensive picture ever obtained of the Orion Nebula. The data will be combined with other Hubble and ground-based telescope observations to create a widely available archive for research scientists interested in this region, in addition to acting as a base for a detailed study that should provide new insights into the conditions required for creating stars like the sun.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu
http://www.exploration.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>