Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping Orion’s winds

11.01.2006


For the past few months, Bob O’Dell has been mapping the winds blowing in the Orion Nebula, the closest stellar nursery similar to the one in which the sun was born.

New data from the Hubble Orion Heritage Program, a major observational effort by the Hubble Space Telescope in 2004 and 2005, have given the Vanderbilt astronomer the information he needs to measure the stellar winds with unprecedented detail, and he reported his early results on Jan. 11 at the annual meeting of the American Astronomical Society in Washington D.C.

"Determining how stellar winds interact with the ambient material in stellar nurseries like Orion is a critical factor in understanding the process of star creation," says O’Dell, distinguished research professor of astrophysics and an international authority on Orion.



All stars, including the Sun, give off a stream of particles as they burn. In young, hot stars like those that form the "Trapezium" at the heart of Orion this stream of particles is millions of times more dense and energetic than the solar wind. Newborn stars, which are still shrouded in thick veils of dust and gas, often eject gas and dust from their polar regions in narrow jets, rather than broadcasting them outward in all directions. When these stellar winds impact floating clouds of dust and gas, they produce shock waves that erode and shape the clouds in a fashion similar to the way in which terrestrial winds sculpt sand dunes. When they are strong enough, such shock waves also can compress the free-floating clouds of dust and gas, triggering the formation of new stars.

O’Dell is using these shock waves as celestial "wind socks" to plot the direction of these winds in different parts of the nebula. By back-tracking older, more distant shock waves to their likely points of origin, the astronomer can also get an idea of how long major currents have been flowing.

"When you look closely enough, you see that the nebula is filled with hundreds of visible shock waves," the astronomer says.

In his analysis, O’Dell has identified three different types of shock waves:

  • Bow-shocks are stationary shock waves that are formed by the collision of two steady winds and are excellent indicators of wind direction. They are present near the hottest stars in the center of the nebula where they show winds flowing outward at velocities of thousands of kilometers per second. They are also present in the outer nebula where they are produced by low velocity stellar winds of tens of kilometers per second.
  • Jet-driven shocks are produced when narrow streams of gas and particles traveling at hundreds of kilometers per second pass through gas that is relatively stationary. There are many shockwaves of this type in the nebula that are produced by jets of material ejected by newly formed stars.
  • Warped shocks are jet-driven shocks located in areas where the ambient gas is not stationary but is moving in a cross current. This bends the jets and shocks into bow-like shapes.

Using these markers, the astronomer has mapped the outflow from two of the three regions of star formation in the nebula. Both of these regions, labeled BN-KL and Orion-South, are located behind the glowing region of the nebula where the light from the central stars ionizes the outer layers of the parent molecular cloud. The specific objects that are producing these winds in the two regions are not visible to optical telescopes but they stand out as hot spots in infrared images.

By tracking back the farthest shockwaves produced by these outflows, O’Dell has established that the winds blowing from BN-KL have been doing so for 900 to 1,100 years, while those from Orion-South have been going on for 200 to 1,500 years. These observations were made during 104 orbits of the Hubble and provide the most comprehensive picture ever obtained of the Orion Nebula. The data will be combined with other Hubble and ground-based telescope observations to create a widely available archive for research scientists interested in this region, in addition to acting as a base for a detailed study that should provide new insights into the conditions required for creating stars like the sun.

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu
http://www.exploration.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>