Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stardust capsule set to return to Earth - UK spokespeople and broadcast information

11.01.2006


This Sunday morning (15th January) at 10.12 am GMT a capsule containing dust from Comet Wild 2 will return to Earth landing in the Utah Desert near Salt Lake City. The landing of the capsule marks the return of NASA’s Stardust mission which has been on a three billion-mile trip to collect pristine cometary material and interstellar dust. After their collection samples will be distributed to a limited number of specialist research teams. Four UK institutions have been invited to be part of these Preliminary Examination Teams: scientists from the Open University, the Natural History Museum, Imperial College and the University of Kent will be hoping that the material provides a key to unlock some of the secrets of the Solar System.



Professor Keith Mason, Chief Executive Officer of the Particle Physics and Astronomy Research Council (PPARC), which part funded the UK involvement in Stardust, said, “The return of the samples from Stardust is a truly remarkable feat. It will be the first time in the history of space exploration that samples from a comet and from interstellar space will be returned to Earth. It is particularly exciting that scientists from the UK will be some of the first to analyse the samples – helping to further our understanding of the origins of the Solar System.”

Following its launch in February 1999 Stardust made its brief but dramatic encounter with Comet Wild 2 (pronounced Vilt after its Swiss discoverer) on 2nd January 2004 capturing thousands of particles as it came within 146 miles of the comet. Remarkably, it survived the high speed impact of millions of dust particles and small rocks of up to half a centimetre across (Stardust passed Comet Wild 2 at 13,000 mph – over 6 times faster than a speeding bullet). Stardust’s tennis racket shaped collector captured thousands of these comet particles into cells filled with Aerogel - a substance so light it almost floats in air.


After their capture the particles were locked away in a “clam shell” capsule to protect them on their journey back to Earth. Some 4 hours before landing the capsule will be released by the spacecraft, via a spring mechanism, where it will enter the Earth’s atmosphere 410,000 feet over the Pacific Ocean. The capsule’s aerodynamic shape and centre of gravity are designed like a shuttlecock so it will automatically orient itself with its nose down as it enters the atmosphere. At approximately 105,000 feet the capsule will release a drogue parachute to control its decent until the main parachute opens at around 10,000 feet. The capsule is scheduled to land at 10.12 am GMT, touching down at a speed of 4.5 metres/second (approximately 10 miles an hour).

After landing the capsule will be recovered by a helicopter crew who will fly it to the US Army Dugway Proving Ground, Utah for initial processing before taking it to NASA’s Johnson Space Centre in Houston. The first samples will be made available to a small number of teams, including The Open University’ s Planetary and Space Science Research Institute (PSSRI), for preliminary analysis before their release to the wider scientific community.

The Open University team including Dr Simon Green, Dr Ian Franchi, Dr John Bridges and Professor Monica Grady will be among the world’s first scientists to analyse the samples that contain the fundamental building blocks of our Solar System. Analysis may be able to determine not only the origins of the Solar System from these samples, but also possibly the origins of life.

“The tiny particles that the Stardust mission is bringing back are the most scientifically exciting and technically challenging material that we have ever had the opportunity to study”, said Professor Grady. “Imagine trying to pick up a grain that is less than a hundredth of the size of the full stop at the end of this sentence. It is amazing to think that such minute specks of dust can carry within them so much information about the origin of stars and planets.”

“Stardust could provide a new window into the distant past,” said Dr Green. “Comets are made of ice and are very cold and have been very cold since they were formed. That protects the material of which they were made from any process of heating, so they haven’t been changed since they were formed, right at the beginning of the formation of the Solar System. So we can have almost a little time capsule of what things were like 4.5 billion years ago. We can also learn about processes in stars and interstellar dust clouds in which the dust grains originally formed. They may also reveal information about the origins of life since comets are a source of organic material that may have formed the original building blocks of life-forming molecules."

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk
http://stardust.jpl.nasa.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>