Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive star cluster found in Milky Way

10.01.2006


RIT/STScI astronomer presents at American Astronomical Society meeting



A massive cluster of red supergiants--super-sized stars on the verge of exploding--was recently discovered in the Milky Way by a group of stronomers using infrared technology to penetrate the thick dust that cloaks much of the galaxy.

Only a few hundred such stars are known to exist in the galaxy, with the previous largest collection of them containing only five. These are the biggest stars: a single red supergiant at the center of the solar system would reach the orbit of Jupiter. The 14 together imply a sea of smaller stars in the cluster having a total mass of at least 20,000 solar masses, according to astronomer Don Figer.


"It seems odd that here is a spectacularly bright cluster and that we are only seeing it now," says Figer, formerly at Space Telescope Science Institute and now at Rochester Institute of Technology. "We didn’t have infrared technology until recently and so people are rescanning the whole galaxy."

He adds: "This gives us the richest sample of stars getting ready to explode. We still don’t understand what they do in their last stage."

Figer presented his research at the American Astronomical Society meeting Jan. 9 in Washington, D.C., and participated in the press conference, Milky Way Roundup.

Figer’s finding may poke holes in some massive star formation models, which suggest that conditions are no longer favorable for this type of massive cluster formation. Ancient globular clusters, containing even more stars, were thought to have been born only very early, at the time of the formation of the galaxy.

"But that’s probably not true because we’re starting to see more massive clusters," Figer notes, adding that further infrared observation will probably reveal more examples.

Of further interest to Figer and his colleagues are the X-rays and rare gamma rays that hang over the cluster, located 18,900 light-years from earth. This high-energy fallout follows a star’s destruction, the remnants of which are only energetic for a short time, giving scientists a snapshot in time of these stars at different stages of life.

The NASA-funded, five-year study will focus on 130 potential star clusters altogether, with the cluster of 14 supergiants being the team’s first study.

The study was made possible with the use of a unique spectrograph built by a team led by John MacKenty, also of the STScI. The instrument--containing a tiny matrix of mirrors similar to those in projection televisions, according to Figer--captures spectral data on 100 stars at one time, a novel approach that made the project possible.

Figer and his colleagues will conduct detailed studies of the 14 individual stars using multiple resources, including the Hubble Space Telescope and the Spitzer telescope.

In addition to Figer, the international team of scientists working on this project include Massimo Robberto and Kester Smith of STScI; Francisco Najarro of the Instituto de Estructura de la Materia in Madrid, Spain; Rolf Kudritzki of the University of Hawaii in Honolulu; and Artemio Herrero of the Unversidad de La Laguna in Tenerife, Spain.

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>