Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Texas physicists put the squeeze on atoms

05.01.2006


Physicists capture small numbers of atoms in laser traps



Like bakers measuring the exact same amount of flour every time they made bread, physicists at The University of Texas at Austin have used a laser trap to consistently capture and measure the same small number of atoms.

Dr. Mark Raizen, Sid W. Richardson Foundation Regents Chair in Physics, and his colleagues at the Center for Nonlinear Dynamics have been able to repeatedly capture as few as sixty atoms in a box made of lasers.


They report their work in the Dec. 30, 2005 issue of Physical Review Letters.

Raizen’s ability to measure atoms with great accuracy places scientists one step closer to assessing and controlling single atoms and realizing quantum computing. Quantum computers will use the power of atoms to store information and make ultra-fast calculations.

Raizen’s work is also the beginning of a new field--quantum atom statistics.

"Some work closes a chapter on a problem in science, and some work opens a new chapter," says Raizen. "I view this as opening a new chapter because the study of quantum statistics of atoms has enormous potential for future discoveries."

Raizen and his colleagues created what’s called a squeezed number state, where the number of atoms captured in a laser trap was held nearly constant. To reach the atomic number squeezing, the physicists made a box out of sheets of laser light. The laser box had no top--just four sides and a bottom--and held a fixed number of atoms like a cup holding ping-pong balls.

"Suppose we have a trap that works like a cup," explains Raizen, "and I start putting ping-pong balls in the cup. I reach a point where I can’t put any more balls in without them spilling over. So there’s a hard cut-off on the number that can fit in the cup. That’s the mechanism we use, only our cup is made out of light."

The other difference, of course, is that Raizen and his colleagues used atoms instead of balls.

In the reported set of experiments, a cloud of Rubidium-87 atoms was trapped and super-cooled into a Bose-Einstein condensate so that they would occupy the ground state of the trap. A Bose-Einstein condensate is a new state of matter that is reached near the absolute zero of temperature, -459.67 Fahrenheit, and typically holds about one million atoms.

To decrease the atom number to as few as sixty atoms, the researchers very slowly lowered the sides of their laser box, which was about two micrometers (two millionths of a meter) across, and the atoms fell out over the lip.

"Every time we lowered the lip a little more, some atoms left the box until finally we reached the level we were happy with and we counted," says Raizen.

The researchers were able to repeatedly trap and count close to the same number of atoms each time with great accuracy, and Raizen says these are "the first measurements of quantum atom statistics by counting atoms." The small remaining fluctuations in number could be accounted for by taking into account small changes in the laser box’s dimensions.

Raizen has dubbed the new concept of the Bose-Einstein condensate leaking out over the top of the trap "quantum evaporation," because the atoms escaped the laser trap like water molecules evaporating out of a glass.

Since the publication of the paper, Raizen says that he and his colleagues have been able to accurately measure and trap as few as twenty atoms. They are aiming for one or two by making the box even smaller.

Lee Clippard | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>