Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Texas physicists put the squeeze on atoms

05.01.2006


Physicists capture small numbers of atoms in laser traps



Like bakers measuring the exact same amount of flour every time they made bread, physicists at The University of Texas at Austin have used a laser trap to consistently capture and measure the same small number of atoms.

Dr. Mark Raizen, Sid W. Richardson Foundation Regents Chair in Physics, and his colleagues at the Center for Nonlinear Dynamics have been able to repeatedly capture as few as sixty atoms in a box made of lasers.


They report their work in the Dec. 30, 2005 issue of Physical Review Letters.

Raizen’s ability to measure atoms with great accuracy places scientists one step closer to assessing and controlling single atoms and realizing quantum computing. Quantum computers will use the power of atoms to store information and make ultra-fast calculations.

Raizen’s work is also the beginning of a new field--quantum atom statistics.

"Some work closes a chapter on a problem in science, and some work opens a new chapter," says Raizen. "I view this as opening a new chapter because the study of quantum statistics of atoms has enormous potential for future discoveries."

Raizen and his colleagues created what’s called a squeezed number state, where the number of atoms captured in a laser trap was held nearly constant. To reach the atomic number squeezing, the physicists made a box out of sheets of laser light. The laser box had no top--just four sides and a bottom--and held a fixed number of atoms like a cup holding ping-pong balls.

"Suppose we have a trap that works like a cup," explains Raizen, "and I start putting ping-pong balls in the cup. I reach a point where I can’t put any more balls in without them spilling over. So there’s a hard cut-off on the number that can fit in the cup. That’s the mechanism we use, only our cup is made out of light."

The other difference, of course, is that Raizen and his colleagues used atoms instead of balls.

In the reported set of experiments, a cloud of Rubidium-87 atoms was trapped and super-cooled into a Bose-Einstein condensate so that they would occupy the ground state of the trap. A Bose-Einstein condensate is a new state of matter that is reached near the absolute zero of temperature, -459.67 Fahrenheit, and typically holds about one million atoms.

To decrease the atom number to as few as sixty atoms, the researchers very slowly lowered the sides of their laser box, which was about two micrometers (two millionths of a meter) across, and the atoms fell out over the lip.

"Every time we lowered the lip a little more, some atoms left the box until finally we reached the level we were happy with and we counted," says Raizen.

The researchers were able to repeatedly trap and count close to the same number of atoms each time with great accuracy, and Raizen says these are "the first measurements of quantum atom statistics by counting atoms." The small remaining fluctuations in number could be accounted for by taking into account small changes in the laser box’s dimensions.

Raizen has dubbed the new concept of the Bose-Einstein condensate leaking out over the top of the trap "quantum evaporation," because the atoms escaped the laser trap like water molecules evaporating out of a glass.

Since the publication of the paper, Raizen says that he and his colleagues have been able to accurately measure and trap as few as twenty atoms. They are aiming for one or two by making the box even smaller.

Lee Clippard | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>