Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold test produces long-sought quantum mix

23.12.2005


Unbalanced superfluid could be akin to exotic matter found in quark star


This is a 3-dimensional projection of an image of a phase separated atomic cloud. The tall central (semi-transparent) region consists of paired fermionic 6 Li atoms, and is believed to be a superfluid. The shorter (opaque) peaks on either side, as well as the faint ring around the bottom, are unpaired atoms which have been expelled from the paired central region. The light in the background is a representation of the probe laser beam used to image this cloud.



In the bizarre and rule-bound world of quantum physics, every tiny spec of matter has something called "spin" - an intrinsic trait like eye color - that cannot be changed and which dictates, very specifically, what other bits of matter the spec can share quantum space with. When fermions, the most antisocial type of quantum particle, do get together, they pair up in a wondrous dance that enables such things as superconductivity.

For the first time, researchers at Rice University have succeeded in creating and observing an elusive and long-sought quantum state - a superfluid of fermions with mismatched numbers of dance partners. Despite more than 40 years of theoretical musings about what would occur in such a case, the result - a cluster of matched pairs surrounded by a cloud of would-be dance partners - was largely unexpected.


The research, which appears online this week, is slated to appear in an upcoming issue of the journal Science, together with a paper from MIT reporting related results. The experiments offer physicists a new window into two of the least understood and most intriguing phenomena in physics - superconductivity and superfluidity.

Both phenomena result from a change in the phase of matter. Anyone who has seen ice melt has seen matter change phases, and when electrons, atoms and other specs of matter change quantum phases, they behave just as differently as do ice and water in a glass.

Superconducting and superfluid phases of matter occur in fermions - the antisocial particles that can’t share quantum space - only when quantum forces become dominant. Because thermodynamic forces are typically so powerful that they overwhelm quantum interactions - like loud music overwhelms the whisper of someone nearby - superconductivity and superfluidity only occur in extreme cold.

In the Rice experiment, when temperatures drop to within a few billionths of a degree of absolute zero, fermions with equal but opposite spin become attracted to one another and behave, in some respects, like one particle. Like a couple on the dance floor, they don’t technically share space, but they move in unison. In superconductors, these dancing pairs allow electrical current to flow through the material without any resistance at all, a property that engineers have long dreamed of harnessing to eliminate "leakage" in power cables, something that costs billions of dollars per year in the U.S. alone.

The superconducting and superfluid phases are analogous except that superconductivity happens with particles carrying an electrical charge and superfluidity occurs in electrically neutral particles. In superfluids, fermionic pairing leads to a complete absence of viscosity - like a wave rippling back and forth in a swimming pool without ever diminishing.

"Conventional theory tells us superconductivity or superfluidity occurs only in the presence of an equal number of spin-up and spin-down particles," said lead researcher Randy Hulet, the Fayez Sarofim Professor of Physics and Astronomy. "Physicists have speculated for almost 50 years about what would happen if this condition were not met.

"Because of the pristine and controlled nature of our ultracold atoms, we’re able to offer definitive evidence of what happens with mismatched numbers of spin-up and spin-down particles."

Ultracold experiments at temperatures just a few billionths of a degree above absolute zero are Hulet’s specialty. It’s only been technically possible to chill atoms to these temperatures for the past 10 years, but in that time, this ability has proved remarkably useful for testing the predictions of quantum mechanics and for exploring the properties of what physicists call "many-body phenomena," including superconductivity and superfluidity.

In the latest experiments, Hulet’s team - which includes graduate students Guthrie Partridge, Ramsey Kamar and Yean-an Liao and postdoctoral researcher Wenhui Li - cooled a mixture of fermionic lithium-6 atoms to about 30-billionths of a degree above absolute zero. That’s far colder than any temperature in nature - even in deepest interstellar space - and it’s sufficient to quell virtually all thermodynamic interaction in the atoms, leaving them subject to superfluid quantum pairing.

Using radio waves, Hulet’s team altered the ratio of spin-up and spin-down atoms in the cooled atoms with great precision. They found that the superfluid was able to tolerate an excess of up to 10 percent unpaired fermions with no detrimental effects.

Hulet’s team found that increasing the ratio of spin-up to spin-down atoms eventually caused a phase change. When unpaired spin-up atoms rose above 10 percent of the total sample, the unpaired loners were suddenly expelled, leaving a core of superfluid pairs surrounded by a shell of excess spin-up atoms.

It is the unbalanced yet seemingly unaffected superfluid, however, that is capturing most of the scientific attention at the moment.

"The gas behaves as if it is still perfectly paired, which is quite remarkable given the excess of spin-up atoms," Hulet said. "This was unexpected, and it could signal a new, exotic form of superfluidity that may be akin to the electron pairings in unconventional superconductors or to the quark soup that’s predicted to exist at the heart of the densest neutron stars."

In the largest neutron stars - known as "quark stars" - a mass about five times greater than the sun is pressed into a space smaller than the island of Manhattan. Some physics theorists believe gravity is so strong at the heart of these stars that it creates something called a "strange matter," a dense superfluid of up quarks, down quarks and strange quarks.

B.J. Almond | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

nachricht Taming 'wild' electrons in graphene
23.10.2017 | Rutgers University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>