Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting a handle on minimal surfaces

21.12.2005


The top image is a traditional helicoid. The bottom one has a hole in it that would become a handle if the shape were completely untwisted into a flat surface.


IU mathematician helps solve old problem that may have new applications

A twisted soap bubble with a handle?

If you find that hard to visualize, it’s understandable. Experts had thought for more than 200 years that such a structure was not even mathematically possible. But no longer.



In a paper published in the Nov. 15 issue of Proceedings of the National Academy of Sciences, mathematicians Matthias Weber of Indiana University, David Hoffman of Stanford University, and Michael Wolf of Rice University presented a proof of the existence of a new minimal surface they call a genus one helicoid.

"This proof tells us that our intuition was not quite right about what is possible and what is not possible," Weber said. "Probably one reason it was not discovered sooner is that no one imagined that something like this could exist."

A helicoid is what results when one of the simplest shapes -- a flat plane -- is twisted an infinite number of times. If the helicoid is vertical, its shape resembles a spiral parking ramp.

The new surface looks much like this traditional helicoid with an extra feature: a handle such as one finds on a coffee mug. It turns out that on one "floor" of the parking ramp there is an additional column -- the handle.

All minimal surfaces have something important in common: a minimal surface area.

"A minimal surface is formed when the pressure on both sides of a surface is the same," Weber explained. "’For example, when you dip a bent coat hanger into soapy water, the soap bubble that forms on the hanger is a minimal surface." These soap bubbles can have various shapes, depending on the shape of the coat hanger, but in every case the bubble is trying to minimize surface tension, he said. This happens when the bubble has the smallest possible surface area.

At every point, a minimal surface is either flat or shaped like a saddle or a potato chip.

Minimal surfaces are proving to be important at the molecular level. "Minimal surfaces actually occur in nature at the nanoscale as interfaces between certain substances," Weber said. An example is some copolymers that are plastics used to make new kinds of fabrics. When these copolymers are mixed, there are interfaces between them that are minimal surfaces. Knowing what these interfaces look like can help in determining what the chemical properties of the mixture will be.

Minimal surfaces are extremely stable as physical objects, Weber pointed out, and this can be an advantage in many kinds of structures. He has heard from architects who have seen computerized illustrations of some of his minimal surfaces and are intrigued by the possibility of adapting them to structures, both interior and exterior. He has exchanged information about minimal surfaces with some architects and is exploring ways to collaborate with them.

Calendars are another use for this work, highlighting the aesthetic qualities of minimal surfaces. These aesthetic qualities are on vivid display in Weber’s computer gallery of minimal surfaces at http://www.indiana.edu/~minimal/gallery/index/index.html, which shows minimal-surface objects set in imaginary landscapes.

"The images in the gallery are not intended as illustrations of mathematical facts," Weber said. "They more than fulfill their purpose if people see them and can feel some of the intriguing enchantment that a mathematician feels when exploring the mathematical objects."

In a second gallery at http://www.indiana.edu/~minimal/archive/index.html the pictures do illustrate mathematical facts. "This is the most comprehensive collection of minimal surfaces available," Weber said. "Users can download programs that recreate the surfaces, allowing them to conduct numerical and visual experiments."

A detailed article about the helicoid discovered by Weber and his co-workers can be found in the Dec. 17 issue of Science News at http://www.sciencenews.org/articles/20051217/bob9.asp.

The mathematicians’ complete proof is more than 100 pages long. The abstract of their report in Proceedings of the National Academy of Sciences is available at http://www.pnas.org/cgi/content/abstract/102/46/16566.

Weber can be reached at 812-855-8724 or matweber@indiana.edu.

Matthias Weber | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>