Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EUREKA brings sunshine to peoples’ hearts

20.12.2005


The EUREKA E! 3418 LIG-HT project is set to bring the sun into the heart of the Austrian Tyrol town of Rattenberg in the depths of winter. A combination of heliotstats – mirrors that track the sun – and optical concentrators would make it possible to light up locations within the town that lies totally in the shadow of a 900-m high mountain for over three months of the year. The benefits would be psychological, economic and environmental.



Rattenberg was built just north of the Rat Mountain for defensive reasons in the Middle Ages. But the height of the mountain means that local inhabitants must seek sun outside their town during the cold winter months from November to mid February. The depressive effect of this lack of natural light has led to a steady reduction in the population over recent years.

“We have worked with the town authorities on various street and monument lighting projects,” explains Wilfried Pohl of Austrian project leader Bartenbach LichtLabor. This lighting design bureau has long specialised in the use of natural light to illuminate windowless offices and underground areas. “Use of natural light not only saves electrical energy but also raises the environmental quality of the areas being illuminated. This led to the idea of using optical reflector technology to provide sunny spots within the town.”


Three main elements

Heliostats are used extensively for solar energy generation, but had not been used for lighting previously. The system proposed in the EUREKA project consists of three main elements:

1. Heliostats sited 400 metres north of the city to redirect sunlight precisely towards secondary reflectors. The heliostats would be mounted on ball joints and computer controlled to trace the movement of the sun automatically;

2. Secondary reflectors on top of the castle hill just above the town, designed and shaped precisely to project sunlight from the heliostats towards specific locations; and

3. Components to distribute the reflected sunlight.
Illumination would have all the properties of natural light in terms of accentuated spots, sharp contrast between light and shadow, brilliance, spectral colour resolution and sparkling effects. “We can’t light the whole town,” explains Pohl. “But we would provide five or six large sunny spots.” Residents and visitors would be aware of the sunshine wherever they were, and so receive the impression of a ‘sunny town’, a very important psychological benefit.

“We intend to illuminate around 100 m2 in all,” adds Pohl. “This would not be economical with artificial lighting, as it would require some 10 million lumens – equivalent to around 100 kW of electrical power.”

Help with funding

Neither the town authorities nor the lighting designer could afford to develop the technology required, so Bartenbach turned to the EUREKA Initiative for help. The resulting project also involves German solar energy equipment manufacturer Bomin Solar Herstellung und Vertrieb Solartechnischer Anlagen, with which Bartenbach has realised many lighting projects, and the University of Catania and SME Cogei that are keen to develop the benefits of such natural light illumination in Italy.

“Stage one involves determining if the project is feasible according both to the laws of physics and technically,” says Pohl. “More importantly, we need to establish if it makes sense to provide such a system and to justify the cost.” This latter point has involved psychological tests as people often expect too much from such systems. The feasibility studies should lead to the engineering phase early in 2006. This would involve developing mirrors and other optical elements that are much more precise in terms of flatness and tolerances than now possible. A full-scale mock-up is planned for mid 2006.

Success of this prototype could lead to the scheme becoming a reality in Rattenberg and perhaps other towns with similar problems as early as 2007. Current estimates are that the overall investment required for the Rattenberg installation would be some €1.5 million. Once the benefits of this natural lighting system can be experienced in a trial installation, the decision to provide funding for implementation should be much easier.

Catherine Shiels | alfa
Further information:
http://www.eureka.be/files/:1148390

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>