Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EUREKA brings sunshine to peoples’ hearts

20.12.2005


The EUREKA E! 3418 LIG-HT project is set to bring the sun into the heart of the Austrian Tyrol town of Rattenberg in the depths of winter. A combination of heliotstats – mirrors that track the sun – and optical concentrators would make it possible to light up locations within the town that lies totally in the shadow of a 900-m high mountain for over three months of the year. The benefits would be psychological, economic and environmental.



Rattenberg was built just north of the Rat Mountain for defensive reasons in the Middle Ages. But the height of the mountain means that local inhabitants must seek sun outside their town during the cold winter months from November to mid February. The depressive effect of this lack of natural light has led to a steady reduction in the population over recent years.

“We have worked with the town authorities on various street and monument lighting projects,” explains Wilfried Pohl of Austrian project leader Bartenbach LichtLabor. This lighting design bureau has long specialised in the use of natural light to illuminate windowless offices and underground areas. “Use of natural light not only saves electrical energy but also raises the environmental quality of the areas being illuminated. This led to the idea of using optical reflector technology to provide sunny spots within the town.”


Three main elements

Heliostats are used extensively for solar energy generation, but had not been used for lighting previously. The system proposed in the EUREKA project consists of three main elements:

1. Heliostats sited 400 metres north of the city to redirect sunlight precisely towards secondary reflectors. The heliostats would be mounted on ball joints and computer controlled to trace the movement of the sun automatically;

2. Secondary reflectors on top of the castle hill just above the town, designed and shaped precisely to project sunlight from the heliostats towards specific locations; and

3. Components to distribute the reflected sunlight.
Illumination would have all the properties of natural light in terms of accentuated spots, sharp contrast between light and shadow, brilliance, spectral colour resolution and sparkling effects. “We can’t light the whole town,” explains Pohl. “But we would provide five or six large sunny spots.” Residents and visitors would be aware of the sunshine wherever they were, and so receive the impression of a ‘sunny town’, a very important psychological benefit.

“We intend to illuminate around 100 m2 in all,” adds Pohl. “This would not be economical with artificial lighting, as it would require some 10 million lumens – equivalent to around 100 kW of electrical power.”

Help with funding

Neither the town authorities nor the lighting designer could afford to develop the technology required, so Bartenbach turned to the EUREKA Initiative for help. The resulting project also involves German solar energy equipment manufacturer Bomin Solar Herstellung und Vertrieb Solartechnischer Anlagen, with which Bartenbach has realised many lighting projects, and the University of Catania and SME Cogei that are keen to develop the benefits of such natural light illumination in Italy.

“Stage one involves determining if the project is feasible according both to the laws of physics and technically,” says Pohl. “More importantly, we need to establish if it makes sense to provide such a system and to justify the cost.” This latter point has involved psychological tests as people often expect too much from such systems. The feasibility studies should lead to the engineering phase early in 2006. This would involve developing mirrors and other optical elements that are much more precise in terms of flatness and tolerances than now possible. A full-scale mock-up is planned for mid 2006.

Success of this prototype could lead to the scheme becoming a reality in Rattenberg and perhaps other towns with similar problems as early as 2007. Current estimates are that the overall investment required for the Rattenberg installation would be some €1.5 million. Once the benefits of this natural lighting system can be experienced in a trial installation, the decision to provide funding for implementation should be much easier.

Catherine Shiels | alfa
Further information:
http://www.eureka.be/files/:1148390

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>