Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new physical phenomenon governed by a quantum law

20.12.2005


A team of researchers has just discovered a new macroscopic physical phenomenon governed by a quantum law: quantum magnetic deflagration. The discovery, published in November in the American journal Physical Review Letters, was made by a team led by Javier Tejada, Professor of Fundamental Physics at the UB, and Paul Santos, a researcher at the Paul Drude Institute in Berlin.



Javier Tejada says that “to understand the idea a parallel could be drawn between chemical combustion and what we know as magnetic combustion. Combustion involves a reaction between a substance (the fuel) and a gas (the oxidizer), and a great amount of heat is released. In a complete combustion reaction the components of the material interact with the oxidizer to yield new components (burnt fuel). Deflagration is a combustion process produced by thermal conductivity and is propagated more slowly than the speed of sound. The simplest example is that of a piece of paper heated with a lighter at one end: one layer of paper burns and heats up the next layer until the whole piece of paper is burnt. That which is propagated and burnt is the flame, while what remains are the ashes”.

What, however, happens with a magnetic material? If we have a magnetic material with all the poles aligned in the same direction (for example, a material made of very small compasses, all of which have the north pole facing upwards) and we apply a magnetic field in the opposite direction the compass poles should turn slowly until, eventually, they are all aligned downwards. If we fire acoustic microwaves at the material to heat it up, then in a certain part of the material the heat will be sufficient to cause the compass poles to reverse in this area. This part of the material then heats the surrounding areas enough to produce the same reaction and the poles of other compasses are reversed; this propagation continues until all the spins are aligned downwards (the opposite of their initial orientation). The reversal of the poles is produced by the tunnelling effect of the magnetic moment, which is a quantum effect.


The researchers have discovered that the propagation speed at which the compass poles are reversed follows a law determined by quantum mechanics. In other words, and contrary to expectations, it is a macroscopic effect governed by a quantum law.

The discovery of quantum magnetic deflagration opens up a new experimental field of relevance to both basic science and technological applications. The article published in Physical Review Letters is the latest scientific advance to be derived from the discovery — ten years ago — of the spin tunnelling effect. The experiment was carried out in the UB under the leadership of Javier Tejada, Professor of Fundamental Physics, and Paul Santos, a researcher at the Paul Drude Institute in Berlin, with the collaboration of the lecturer Antonio García-Santiago, Alberto Hernàndez and Ferran Macià (doctoral students) and Joan Manel Hernàndez (Ramon y Cajal researcher) from the Department of Fundamental Physics at the UB. The research was funded by the company SAMCA, the Spanish Ministerio de Educación y Ciencia and the European Union, and was conducted using new generation equipment developed by the company Agilent Technology.

In addition to its impact in the research world the spin tunnelling effect discovered by J. R. Friedman, M. Sarachik, Javier Tejada and Ron Ziolo, and reported in Physical Review Letters in 1996, now features in text books on magnetism. Recognized as a scientific discovery by the editorials of prestigious journals (Science, Nature, Physics Today), this initial study on the discovery of the tunnelling effect has achieved one of the most significant citation indexes for publications from Physical Review Letters.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>