Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new physical phenomenon governed by a quantum law

20.12.2005


A team of researchers has just discovered a new macroscopic physical phenomenon governed by a quantum law: quantum magnetic deflagration. The discovery, published in November in the American journal Physical Review Letters, was made by a team led by Javier Tejada, Professor of Fundamental Physics at the UB, and Paul Santos, a researcher at the Paul Drude Institute in Berlin.



Javier Tejada says that “to understand the idea a parallel could be drawn between chemical combustion and what we know as magnetic combustion. Combustion involves a reaction between a substance (the fuel) and a gas (the oxidizer), and a great amount of heat is released. In a complete combustion reaction the components of the material interact with the oxidizer to yield new components (burnt fuel). Deflagration is a combustion process produced by thermal conductivity and is propagated more slowly than the speed of sound. The simplest example is that of a piece of paper heated with a lighter at one end: one layer of paper burns and heats up the next layer until the whole piece of paper is burnt. That which is propagated and burnt is the flame, while what remains are the ashes”.

What, however, happens with a magnetic material? If we have a magnetic material with all the poles aligned in the same direction (for example, a material made of very small compasses, all of which have the north pole facing upwards) and we apply a magnetic field in the opposite direction the compass poles should turn slowly until, eventually, they are all aligned downwards. If we fire acoustic microwaves at the material to heat it up, then in a certain part of the material the heat will be sufficient to cause the compass poles to reverse in this area. This part of the material then heats the surrounding areas enough to produce the same reaction and the poles of other compasses are reversed; this propagation continues until all the spins are aligned downwards (the opposite of their initial orientation). The reversal of the poles is produced by the tunnelling effect of the magnetic moment, which is a quantum effect.


The researchers have discovered that the propagation speed at which the compass poles are reversed follows a law determined by quantum mechanics. In other words, and contrary to expectations, it is a macroscopic effect governed by a quantum law.

The discovery of quantum magnetic deflagration opens up a new experimental field of relevance to both basic science and technological applications. The article published in Physical Review Letters is the latest scientific advance to be derived from the discovery — ten years ago — of the spin tunnelling effect. The experiment was carried out in the UB under the leadership of Javier Tejada, Professor of Fundamental Physics, and Paul Santos, a researcher at the Paul Drude Institute in Berlin, with the collaboration of the lecturer Antonio García-Santiago, Alberto Hernàndez and Ferran Macià (doctoral students) and Joan Manel Hernàndez (Ramon y Cajal researcher) from the Department of Fundamental Physics at the UB. The research was funded by the company SAMCA, the Spanish Ministerio de Educación y Ciencia and the European Union, and was conducted using new generation equipment developed by the company Agilent Technology.

In addition to its impact in the research world the spin tunnelling effect discovered by J. R. Friedman, M. Sarachik, Javier Tejada and Ron Ziolo, and reported in Physical Review Letters in 1996, now features in text books on magnetism. Recognized as a scientific discovery by the editorials of prestigious journals (Science, Nature, Physics Today), this initial study on the discovery of the tunnelling effect has achieved one of the most significant citation indexes for publications from Physical Review Letters.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>