Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of a new physical phenomenon governed by a quantum law


A team of researchers has just discovered a new macroscopic physical phenomenon governed by a quantum law: quantum magnetic deflagration. The discovery, published in November in the American journal Physical Review Letters, was made by a team led by Javier Tejada, Professor of Fundamental Physics at the UB, and Paul Santos, a researcher at the Paul Drude Institute in Berlin.

Javier Tejada says that “to understand the idea a parallel could be drawn between chemical combustion and what we know as magnetic combustion. Combustion involves a reaction between a substance (the fuel) and a gas (the oxidizer), and a great amount of heat is released. In a complete combustion reaction the components of the material interact with the oxidizer to yield new components (burnt fuel). Deflagration is a combustion process produced by thermal conductivity and is propagated more slowly than the speed of sound. The simplest example is that of a piece of paper heated with a lighter at one end: one layer of paper burns and heats up the next layer until the whole piece of paper is burnt. That which is propagated and burnt is the flame, while what remains are the ashes”.

What, however, happens with a magnetic material? If we have a magnetic material with all the poles aligned in the same direction (for example, a material made of very small compasses, all of which have the north pole facing upwards) and we apply a magnetic field in the opposite direction the compass poles should turn slowly until, eventually, they are all aligned downwards. If we fire acoustic microwaves at the material to heat it up, then in a certain part of the material the heat will be sufficient to cause the compass poles to reverse in this area. This part of the material then heats the surrounding areas enough to produce the same reaction and the poles of other compasses are reversed; this propagation continues until all the spins are aligned downwards (the opposite of their initial orientation). The reversal of the poles is produced by the tunnelling effect of the magnetic moment, which is a quantum effect.

The researchers have discovered that the propagation speed at which the compass poles are reversed follows a law determined by quantum mechanics. In other words, and contrary to expectations, it is a macroscopic effect governed by a quantum law.

The discovery of quantum magnetic deflagration opens up a new experimental field of relevance to both basic science and technological applications. The article published in Physical Review Letters is the latest scientific advance to be derived from the discovery — ten years ago — of the spin tunnelling effect. The experiment was carried out in the UB under the leadership of Javier Tejada, Professor of Fundamental Physics, and Paul Santos, a researcher at the Paul Drude Institute in Berlin, with the collaboration of the lecturer Antonio García-Santiago, Alberto Hernàndez and Ferran Macià (doctoral students) and Joan Manel Hernàndez (Ramon y Cajal researcher) from the Department of Fundamental Physics at the UB. The research was funded by the company SAMCA, the Spanish Ministerio de Educación y Ciencia and the European Union, and was conducted using new generation equipment developed by the company Agilent Technology.

In addition to its impact in the research world the spin tunnelling effect discovered by J. R. Friedman, M. Sarachik, Javier Tejada and Ron Ziolo, and reported in Physical Review Letters in 1996, now features in text books on magnetism. Recognized as a scientific discovery by the editorials of prestigious journals (Science, Nature, Physics Today), this initial study on the discovery of the tunnelling effect has achieved one of the most significant citation indexes for publications from Physical Review Letters.

Rosa Martínez | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>