Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infant galaxy found

09.10.2001


Abell 2218, and the area where the infants were found.
© ESA/NASA


Large galaxies bend and magnify light from distant sources, giving us a view back in time.
© ESA/NASA


Cosmic lens magnifies faint galactic building-block.

Astronomers have peered deep into space and time and spotted a baby galaxy. Their results suggest that the tiny star-forming region may have helped to build today’s Universe1.

"We believe this is one of the galactic building-blocks that join together to make larger galaxies," says Konrad Kuijken, of the Kapteyn Institute in Groningen, the Netherlands, a member of the team that found the object. The merging over time of galaxies born just after the Universe began is thought to have made large galaxies, such as our Milky Way.



"This is a significant step towards understanding galaxy formation," says astronomer Rob Kennicutt of the University of Arizona in Tucson. More building-blocks must be found to get to the bottom of it, he says.

The international team had been on the trail of baby galaxies for over a year. Confirming their existence is no easy task. They are small, very far away and give out far less light than telescopes can detect.

To find this one, says Kuijken, "we had to make our own luck". This meant exploiting a phenomenon predicted by Einstein’s general theory of relativity: gravitational lensing. The vast gravity of very massive objects such as galaxies bends and magnifies, light coming from behind them, much as a glass lens bends light in a telescope.

The team pointed the Hubble Space Telescope and the Hawaii-based Keck telescope towards one such gravitational lens - a massive cluster of nearby galaxies called Abell 2218.

After two lengthy exposures, the team found two faint red blobs representing the light from the baby galaxy magnified more than 30 times and split in two by the gravitational lens.

Concluding that they were looking at a baby galaxy, the discoverers, typically a reserved lot, "literally jumped up and down" with excitement, confesses team member Jean-Paul Kneib of the Mid-Pyrenees Observatory in Toulouse, France.

Measuring the wavelengths and brightness of its light, the team calculate that the baby galaxy is about 200 times smaller than our Galaxy and 13.4 billion light years away. Signatures in this 13.4-billion-year-old light also reveal that the infant was actively making new stars at that time - just 600 million years after the birth of the Universe.

Combined, these characteristics mean the object is most likely to be a galactic building-block. "It’s exactly like what our models predict," says Kuijken.

Kuijken is hopeful that the team will find more such objects. "There are many other galaxy clusters in the sky," he says, and behind some of these giant lenses may lurk more infant galaxies.

References
  1. Name, A.B.Title. Astrophysical Journal Letters, in press (2001).


TOM CLARKE | Nature News Service
Further information:
http://www.nature.com/nsu/011011/011011-4.html

More articles from Physics and Astronomy:

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>