Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infant galaxy found

09.10.2001


Abell 2218, and the area where the infants were found.
© ESA/NASA


Large galaxies bend and magnify light from distant sources, giving us a view back in time.
© ESA/NASA


Cosmic lens magnifies faint galactic building-block.

Astronomers have peered deep into space and time and spotted a baby galaxy. Their results suggest that the tiny star-forming region may have helped to build today’s Universe1.

"We believe this is one of the galactic building-blocks that join together to make larger galaxies," says Konrad Kuijken, of the Kapteyn Institute in Groningen, the Netherlands, a member of the team that found the object. The merging over time of galaxies born just after the Universe began is thought to have made large galaxies, such as our Milky Way.



"This is a significant step towards understanding galaxy formation," says astronomer Rob Kennicutt of the University of Arizona in Tucson. More building-blocks must be found to get to the bottom of it, he says.

The international team had been on the trail of baby galaxies for over a year. Confirming their existence is no easy task. They are small, very far away and give out far less light than telescopes can detect.

To find this one, says Kuijken, "we had to make our own luck". This meant exploiting a phenomenon predicted by Einstein’s general theory of relativity: gravitational lensing. The vast gravity of very massive objects such as galaxies bends and magnifies, light coming from behind them, much as a glass lens bends light in a telescope.

The team pointed the Hubble Space Telescope and the Hawaii-based Keck telescope towards one such gravitational lens - a massive cluster of nearby galaxies called Abell 2218.

After two lengthy exposures, the team found two faint red blobs representing the light from the baby galaxy magnified more than 30 times and split in two by the gravitational lens.

Concluding that they were looking at a baby galaxy, the discoverers, typically a reserved lot, "literally jumped up and down" with excitement, confesses team member Jean-Paul Kneib of the Mid-Pyrenees Observatory in Toulouse, France.

Measuring the wavelengths and brightness of its light, the team calculate that the baby galaxy is about 200 times smaller than our Galaxy and 13.4 billion light years away. Signatures in this 13.4-billion-year-old light also reveal that the infant was actively making new stars at that time - just 600 million years after the birth of the Universe.

Combined, these characteristics mean the object is most likely to be a galactic building-block. "It’s exactly like what our models predict," says Kuijken.

Kuijken is hopeful that the team will find more such objects. "There are many other galaxy clusters in the sky," he says, and behind some of these giant lenses may lurk more infant galaxies.

References
  1. Name, A.B.Title. Astrophysical Journal Letters, in press (2001).


TOM CLARKE | Nature News Service
Further information:
http://www.nature.com/nsu/011011/011011-4.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>