Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infant galaxy found

09.10.2001


Abell 2218, and the area where the infants were found.
© ESA/NASA


Large galaxies bend and magnify light from distant sources, giving us a view back in time.
© ESA/NASA


Cosmic lens magnifies faint galactic building-block.

Astronomers have peered deep into space and time and spotted a baby galaxy. Their results suggest that the tiny star-forming region may have helped to build today’s Universe1.

"We believe this is one of the galactic building-blocks that join together to make larger galaxies," says Konrad Kuijken, of the Kapteyn Institute in Groningen, the Netherlands, a member of the team that found the object. The merging over time of galaxies born just after the Universe began is thought to have made large galaxies, such as our Milky Way.



"This is a significant step towards understanding galaxy formation," says astronomer Rob Kennicutt of the University of Arizona in Tucson. More building-blocks must be found to get to the bottom of it, he says.

The international team had been on the trail of baby galaxies for over a year. Confirming their existence is no easy task. They are small, very far away and give out far less light than telescopes can detect.

To find this one, says Kuijken, "we had to make our own luck". This meant exploiting a phenomenon predicted by Einstein’s general theory of relativity: gravitational lensing. The vast gravity of very massive objects such as galaxies bends and magnifies, light coming from behind them, much as a glass lens bends light in a telescope.

The team pointed the Hubble Space Telescope and the Hawaii-based Keck telescope towards one such gravitational lens - a massive cluster of nearby galaxies called Abell 2218.

After two lengthy exposures, the team found two faint red blobs representing the light from the baby galaxy magnified more than 30 times and split in two by the gravitational lens.

Concluding that they were looking at a baby galaxy, the discoverers, typically a reserved lot, "literally jumped up and down" with excitement, confesses team member Jean-Paul Kneib of the Mid-Pyrenees Observatory in Toulouse, France.

Measuring the wavelengths and brightness of its light, the team calculate that the baby galaxy is about 200 times smaller than our Galaxy and 13.4 billion light years away. Signatures in this 13.4-billion-year-old light also reveal that the infant was actively making new stars at that time - just 600 million years after the birth of the Universe.

Combined, these characteristics mean the object is most likely to be a galactic building-block. "It’s exactly like what our models predict," says Kuijken.

Kuijken is hopeful that the team will find more such objects. "There are many other galaxy clusters in the sky," he says, and behind some of these giant lenses may lurk more infant galaxies.

References
  1. Name, A.B.Title. Astrophysical Journal Letters, in press (2001).


TOM CLARKE | Nature News Service
Further information:
http://www.nature.com/nsu/011011/011011-4.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>