Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid particles irreversible in some circumstances, physicists report in this week’s Nature

15.12.2005


When a viscous fluid, such as a jar of honey, is stirred and then unstirred, the contents return to their starting points. However, according to research by a team of physicists headed by New York University’s David Pine, the particles of such fluids do not always return to their original locations. The findings are reported in the latest issue of the journal Nature.

It is a well-established consequence of the laws governing fluid motion that when a viscous fluid is stirred and then unstirred, all parts of the liquid return to their starting points. Pine, along with his colleagues at the Haverford College (PA), the California Institute of Technology, and the Israel Institute of Technology in Haifa, examined what happens to the particles of such fluids during this process.

The researchers studied the movement of tiny polymer beads suspended in a viscous fluid trapped between two concentric cylinders. The cylinders were held 2.5 millimeters apart and could rotate relative to each other. Based on their experiments, the researchers observed that for low concentrations of beads stirred a short distance, the mixing can be reversed so that the beads return to their starting positions. However, at higher concentrations, or with more stirring, mixing became irreversible. The appearance of this irreversible behavior is caused by multiple encounters between individual beads, they concluded.



"The irreversibility of these particles may be explained by the extreme sensitivity of their trajectories to imperceptibly small changes of the particle positions," said Pine, director of NYU’s Center for Soft Matter Research. "Such perturbations might arise from almost anything, such as small imperfections in the particles or by small external forces, and are magnified exponentially by the wakes particles sense due to the motion of other particles suspended in the liquid. Physical systems that exhibit such extreme sensitivity to small perturbations are said to be ’chaotic.’ "

Pine also noted that the results "are interesting from a fundamental point of view because they demonstrate experimentally how vanishingly small perturbations of systems governed by deterministic equations can lead to stochastic non-deterministic behavior."

Mixing processes are difficult to scale up from laboratory bench to production plant because the change in their mixing behavior can be unpredictable. For example, poor understanding of particle migration during injection molding of precision ceramic parts limits manufacturing of large complex shapes. Understanding the influence of collisions between suspended particles may shed new light on the problem.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>