Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid particles irreversible in some circumstances, physicists report in this week’s Nature

15.12.2005


When a viscous fluid, such as a jar of honey, is stirred and then unstirred, the contents return to their starting points. However, according to research by a team of physicists headed by New York University’s David Pine, the particles of such fluids do not always return to their original locations. The findings are reported in the latest issue of the journal Nature.

It is a well-established consequence of the laws governing fluid motion that when a viscous fluid is stirred and then unstirred, all parts of the liquid return to their starting points. Pine, along with his colleagues at the Haverford College (PA), the California Institute of Technology, and the Israel Institute of Technology in Haifa, examined what happens to the particles of such fluids during this process.

The researchers studied the movement of tiny polymer beads suspended in a viscous fluid trapped between two concentric cylinders. The cylinders were held 2.5 millimeters apart and could rotate relative to each other. Based on their experiments, the researchers observed that for low concentrations of beads stirred a short distance, the mixing can be reversed so that the beads return to their starting positions. However, at higher concentrations, or with more stirring, mixing became irreversible. The appearance of this irreversible behavior is caused by multiple encounters between individual beads, they concluded.



"The irreversibility of these particles may be explained by the extreme sensitivity of their trajectories to imperceptibly small changes of the particle positions," said Pine, director of NYU’s Center for Soft Matter Research. "Such perturbations might arise from almost anything, such as small imperfections in the particles or by small external forces, and are magnified exponentially by the wakes particles sense due to the motion of other particles suspended in the liquid. Physical systems that exhibit such extreme sensitivity to small perturbations are said to be ’chaotic.’ "

Pine also noted that the results "are interesting from a fundamental point of view because they demonstrate experimentally how vanishingly small perturbations of systems governed by deterministic equations can lead to stochastic non-deterministic behavior."

Mixing processes are difficult to scale up from laboratory bench to production plant because the change in their mixing behavior can be unpredictable. For example, poor understanding of particle migration during injection molding of precision ceramic parts limits manufacturing of large complex shapes. Understanding the influence of collisions between suspended particles may shed new light on the problem.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>