Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JHU-STScI team maps dark matter in startling detail

13.12.2005


Clues revealed by the recently sharpened view of the Hubble Space Telescope have allowed astronomers to map the location of invisible "dark matter" in unprecedented detail in two very young galaxy clusters.


This is the snapshot of the computer simulation of the dark matter Universe. These filamentary structures are called "cosmic webs" of dark matter.



A Johns Hopkins University-Space Telescope Science Institute team reports its findings in the December issue of Astrophysical Journal. (Other, less-detailed observations appeared in the January 2005 issue of that publication.)

The team’s results lend credence to the theory that the galaxies we can see form at the densest regions of "cosmic webs" of invisible dark matter, just as froth gathers on top of ocean waves, said study co-author Myungkook James Jee, assistant research scientist in the Henry A. Rowland Department of Physics and Astronomy in Johns Hopkins’ Krieger School of Arts and Sciences.


"Advances in computer technology now allow us to simulate the entire universe and to follow the coalescence of matter into stars, galaxies, clusters of galaxies and enormously long filaments of matter from the first hundred thousand years to the present," Jee said. "However, it is very challenging to verify the simulation results observationally, because dark matter does not emit light."

Jee said the team measured the subtle gravitational "lensing" apparent in Hubble images -- that is, the small distortions of galaxies’ shapes caused by gravity from unseen dark matter -- to produce its detailed dark matter maps. They conducted their observations in two clusters of galaxies that were forming when the universe was about half its present age.

"The images we took show clearly that the cluster galaxies are located at the densest regions of the dark matter haloes, which are rendered in purple in our images," Jee said.

The work buttresses the theory that dark matter - which constitutes 90 percent of matter in the universe -- and visible matter should coalesce at the same places because gravity pulls them together, Jee said. Concentrations of dark matter should attract visible matter, and as a result, assist in the formation of luminous stars, galaxies and galaxy clusters.

Dark matter presents one of the most puzzling problems in modern cosmology. Invisible, yet undoubtedly there -- scientists can measure its effects -- its exact characteristics remain elusive. Previous attempts to map dark matter in detail with ground-based telescopes were handicapped by turbulence in the Earth’s atmosphere, which blurred the resulting images.

"Observing through the atmosphere is like trying to see the details of a picture at the bottom of a swimming pool full of waves," said Holland Ford, one of the paper’s co-authors and a professor of physics and astronomy at Johns Hopkins.

The Johns Hopkins-STScI team was able to overcome the atmospheric obstacle through the use of the space-based Hubble telescope. The installation of the Advanced Camera for Surveys in the Hubble three years ago was an additional boon, increasing the discovery efficiency of the previous HST by a factor of 10.

The team concentrated on two galaxy clusters (each containing more than 400 galaxies) in the southern sky.

"These images were actually intended mainly to study the galaxies in the clusters, and not the lensing of the background galaxies," said co-author Richard White, a STScI astronomer who also is head of the Hubble data archive for STScI. "But the sharpness and sensitivity of the images made them ideal for this project. That’s the real beauty of Hubble images: They will be used for years for new scientific investigations."

The result of the team’s analysis is a series of vividly detailed, computer-simulated images illustrating the dark matter’s location. According to Jee, these images provide researchers with an unprecedented opportunity to infer dark matter’s properties.

The clumped structure of dark matter around the cluster galaxies is consistent with the current belief that dark matter particles are "collision-less," Jee said. Unlike normal matter particles, physicists believe, they do not collide and scatter like billiard balls but rather simply pass through each other.

"Collision-less particles do not bombard one another, the way two hydrogen atoms do. If dark matter particles were collisional, we would observe a much smoother distribution of dark matter, without any small-scale clumpy structures," Jee said.

Ford said this study demonstrates that the ACS is uniquely advantageous for gravitational lensing studies and will, over time, substantially enhance understanding of the formation and evolution of the cosmic structure, as well as of dark matter.

"I am enormously gratified that the seven years of hard work by so many talented scientists and engineers to make the Advanced Camera for Surveys is providing all of humanity with deeper images and understandings of the origins of our marvelous universe," said Ford, who is principal investigator for ACS and a leader of the science team.

Lisa De Nike | EurekAlert!
Further information:
http://www.jhu.edu/news/home05/dec05/darkpix.html
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>