Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JHU-STScI team maps dark matter in startling detail

13.12.2005


Clues revealed by the recently sharpened view of the Hubble Space Telescope have allowed astronomers to map the location of invisible "dark matter" in unprecedented detail in two very young galaxy clusters.


This is the snapshot of the computer simulation of the dark matter Universe. These filamentary structures are called "cosmic webs" of dark matter.



A Johns Hopkins University-Space Telescope Science Institute team reports its findings in the December issue of Astrophysical Journal. (Other, less-detailed observations appeared in the January 2005 issue of that publication.)

The team’s results lend credence to the theory that the galaxies we can see form at the densest regions of "cosmic webs" of invisible dark matter, just as froth gathers on top of ocean waves, said study co-author Myungkook James Jee, assistant research scientist in the Henry A. Rowland Department of Physics and Astronomy in Johns Hopkins’ Krieger School of Arts and Sciences.


"Advances in computer technology now allow us to simulate the entire universe and to follow the coalescence of matter into stars, galaxies, clusters of galaxies and enormously long filaments of matter from the first hundred thousand years to the present," Jee said. "However, it is very challenging to verify the simulation results observationally, because dark matter does not emit light."

Jee said the team measured the subtle gravitational "lensing" apparent in Hubble images -- that is, the small distortions of galaxies’ shapes caused by gravity from unseen dark matter -- to produce its detailed dark matter maps. They conducted their observations in two clusters of galaxies that were forming when the universe was about half its present age.

"The images we took show clearly that the cluster galaxies are located at the densest regions of the dark matter haloes, which are rendered in purple in our images," Jee said.

The work buttresses the theory that dark matter - which constitutes 90 percent of matter in the universe -- and visible matter should coalesce at the same places because gravity pulls them together, Jee said. Concentrations of dark matter should attract visible matter, and as a result, assist in the formation of luminous stars, galaxies and galaxy clusters.

Dark matter presents one of the most puzzling problems in modern cosmology. Invisible, yet undoubtedly there -- scientists can measure its effects -- its exact characteristics remain elusive. Previous attempts to map dark matter in detail with ground-based telescopes were handicapped by turbulence in the Earth’s atmosphere, which blurred the resulting images.

"Observing through the atmosphere is like trying to see the details of a picture at the bottom of a swimming pool full of waves," said Holland Ford, one of the paper’s co-authors and a professor of physics and astronomy at Johns Hopkins.

The Johns Hopkins-STScI team was able to overcome the atmospheric obstacle through the use of the space-based Hubble telescope. The installation of the Advanced Camera for Surveys in the Hubble three years ago was an additional boon, increasing the discovery efficiency of the previous HST by a factor of 10.

The team concentrated on two galaxy clusters (each containing more than 400 galaxies) in the southern sky.

"These images were actually intended mainly to study the galaxies in the clusters, and not the lensing of the background galaxies," said co-author Richard White, a STScI astronomer who also is head of the Hubble data archive for STScI. "But the sharpness and sensitivity of the images made them ideal for this project. That’s the real beauty of Hubble images: They will be used for years for new scientific investigations."

The result of the team’s analysis is a series of vividly detailed, computer-simulated images illustrating the dark matter’s location. According to Jee, these images provide researchers with an unprecedented opportunity to infer dark matter’s properties.

The clumped structure of dark matter around the cluster galaxies is consistent with the current belief that dark matter particles are "collision-less," Jee said. Unlike normal matter particles, physicists believe, they do not collide and scatter like billiard balls but rather simply pass through each other.

"Collision-less particles do not bombard one another, the way two hydrogen atoms do. If dark matter particles were collisional, we would observe a much smoother distribution of dark matter, without any small-scale clumpy structures," Jee said.

Ford said this study demonstrates that the ACS is uniquely advantageous for gravitational lensing studies and will, over time, substantially enhance understanding of the formation and evolution of the cosmic structure, as well as of dark matter.

"I am enormously gratified that the seven years of hard work by so many talented scientists and engineers to make the Advanced Camera for Surveys is providing all of humanity with deeper images and understandings of the origins of our marvelous universe," said Ford, who is principal investigator for ACS and a leader of the science team.

Lisa De Nike | EurekAlert!
Further information:
http://www.jhu.edu/news/home05/dec05/darkpix.html
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>