Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA accelerates towards a new space thruster

13.12.2005


ESA has confirmed the principle of a new space thruster that may ultimately give much more thrust than today’s electric propulsion techniques. The concept is an ingenious one, inspired by the northern and southern aurorae, the glows in the sky that signal increased solar activity.



“Essentially the concept exploits a natural phenomenon we see taking place in space,” says Dr Roger Walker of ESA’s Advanced Concepts Team. "When the solar wind, a ‘plasma’ of electrified gas released by the Sun, hits the magnetic field of the Earth, it creates a boundary consisting of two plasma layers. Each layer has differing electrical properties and this can accelerate some particles of the solar wind across the boundary, causing them to collide with the Earth’s atmosphere and create the aurora."

In essence, a plasma double layer is the electrostatic equivalent of a waterfall. Just as water molecules pick up energy as they fall between the two different heights, so electrically charged particles pick up energy as they travel through the layers of different electrical properties.


Researchers Christine Charles and Rod Boswell at the Australian National University in Canberra, first created plasma double layers in their laboratory in 2003 and realised their accelerating properties could enable new spacecraft thrusters. This led the group to develop a prototype called the Helicon Double Layer Thruster.

The new ESA study, performed as part of ESA’s Ariadna academic research programme in association with Ecole Polytechnique, Paris, confirms the Australian findings by showing that under carefully controlled conditions, the double layer could be formed and remains stable, allowing the constant acceleration of charged particles in a beam. The study also confirmed that stable double layers could be created with different propellant gas mixtures.

“The collaboration has been absolutely excellent,” says Dr Pascal Chabert, of Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique. “It has been a real kick-off for me and has given me lots of new ideas for plasma propulsion concepts to investigate with the Advanced Concepts Team. The new direction for our laboratory had led to a patent on a promising new electric propulsion device called an Electronegative Plasma Thruster.”

To create the double layer, Chabert and colleagues created a hollow tube around which was wound a radio antenna. Argon gas was continuously pumped into the tube and the antenna transmitted helicoidal radio waves of 13 megahertz. This ionised the argon creating a plasma. A diverging magnetic field at the end of the tube then forced the plasma leaving the pipe to expand. This allowed two different plasmas to be formed, upstream within the tube and downstream, and so the double layer was created at their boundary. This accelerated further argon plasma from the tube into a supersonic beam, creating thrust.

Calculations suggest that a helicon double layer thruster would take up a little more space than the main electric thruster on ESA’s SMART-1 mission, yet it could potentially deliver many times more thrust at higher powers of up to 100 kW whilst giving a similar fuel efficiency.

In the next steps, ESA will now construct a detailed computer simulation of the plasma in and around the thruster and use the laboratory results to verify its accuracy, so that the in-space performance can be fully assessed and larger high power experimental thrusters can be investigated in the future.

Roger Walker | alfa
Further information:
http://www.esa.int/esaCP/SEM6HSVLWFE_index_0.html
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>