Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnet lab researcher exploring science behind commercial applications of liquid helium

12.12.2005


Picture a teaspoon of powdered sugar. As fine a substance as it is, there still are tremendous differences in the sizes of its individual particles. Some are so small, they move around randomly and are invisible to the naked eye.



Now, let’s say you wanted to choose only particles of a certain size from those in the spoon. Traditional technology and scientific techniques can separate quantities of particles of different sizes down to a few microns, but beyond that, it’s not currently possible to perform this operation at the submicron level. Being able to do so would allow for the production of certain types of drugs that are most effective when inhaled.

How small is a submicron? Consider that a micron is a mere 0.00004 of an inch. Yet unlocking the mystery of how to manipulate, measure and separate very tiny particles has tremendous applications for the pharmaceutical industry and could change how some medications are delivered and how effective they are.


That’s the backdrop for the research of Steven W. Van Sciver, a professor of mechanical engineering with the Florida A&M University/Florida State University College of Engineering and an expert in cryogenics (the study of low-temperature phenomena) at the National High Magnetic Field Laboratory in Tallahassee. Van Sciver is working with technology company Oxford Instruments on the first phase of a grant to help prove the concept behind a patent-pending cryogenic technique for particle separation from a few microns down to submicrons.

With funding from Oxford Instruments, Van Sciver is performing the basic science behind how particles behave in liquid helium. Helium turns into liquid only at very low temperatures (minus 452 degrees Fahrenheit, where virtually everything else is frozen solid). If helium is cooled to even lower temperatures, it becomes "superfluid," meaning that if placed in a closed loop it can flow endlessly without friction.

"Superfluid helium has extraordinary properties," said Van Sciver. "Because of its unique viscosity and heat conductivity, its flow can be controlled to a degree you can’t get with other fluids. It has lots of potential for commercial applications."

In a letter published in a recent issue of Nature Physics, Van Sciver wrote that when superfluid helium flows toward and then around a relatively large object, say the size of a small stone, it has a tendency to create whirlpools not just in the back, as would be expected, but also in the front. So a portion is flowing "counterflow," or in an opposite direction. This is a unique observation and a link in the chain of science that Van Sciver hopes ultimately will lead to development of a cryogenic technique for particle separation. (To view the abstract of Van Sciver’s letter, see www.nature.com/nphys/journal/v1/n1/full/nphys114.html.)

Toward this end, Van Sciver is moving forward on a research-and-development program funded by Oxford Instruments to establish the operating principles behind a device to separate particles. Proper sizing of particles is critically important for effective "aspiration" delivery of medication; some medications are much better tolerated when absorbed through the lungs rather than through the bloodstream.

"In order to deliver respiratory medications to the deep lung efficiently, careful engineering of the size and density of the microparticles in the drug is essential," said Neal Kalechofsky, technology development manager with Oxford Instruments, a global technology company that provides tools and systems for the physical science and bioscience sectors. "Through our partnership with FSU, we are exploring the extension of low-temperature technology to new applications in microparticle classification."

Steven W. Van Sciver | EurekAlert!
Further information:
http://www.magnet.fsu.edu
http://www.nature.com/nphys/journal/v1/n1/full/nphys114.html

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>