Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy collisions dominate the local universe

08.12.2005


More than half of the largest galaxies in the nearby universe have collided and merged with another galaxy in the past two billion years, according to a Yale astronomer in a study using hundreds of images from two of the deepest sky surveys ever conducted.


The panels show several of the newly found galaxy collisions in the nearby universe, using the NOAO Deep Wide-Field Survey (NDWFS) and the Multiwavelength Survey by Yale/Chile (MUSYC). The collisions (occurring in different galaxy pairs) are seen in different stages of the merger process, which taken together show the sequence that occurs. In (a) and (b) [top left and top right], the galaxies are still separated, but huge tidal forces of gravity are already at work pulling stars from the galaxies into enormous broad fans that stretch hundreds of thousands of light-years in space.
In (c) and (d) [bottom left and bottom right], the colliding galaxies have merged into single, larger galaxies. The violent past of these galaxies can be inferred from the tidal "debris" that still surrounds the newly formed galaxies. Images (a), (b), and (d) are from the NDWFS; image (c) is from MUSYC. Credit: P. van Dokkum/Yale University and NOAO/AURA/NSF



The idea of large galaxies being assembled primarily by mergers rather than evolving by themselves in isolation has grown to dominate cosmological thinking. However, a troubling inconsistency within this general theory has been that the most massive galaxies appear to be the oldest, leaving minimal time since the Big Bang for the mergers to have occurred.

"Our study found these common massive galaxies do form by mergers. It is just that the mergers happen quickly, and the features that reveal the mergers are very faint and therefore difficult to detect," said Pieter van Dokkum , assistant professor of astronomy at Yale University, and sole author of the paper appearing in the December 2005 issue of the Astronomical Journal.


The paper uses two recent deep surveys done with the National Science Foundation’s 4-meter telescopes at Kitt Peak National Observatory and Cerro Tololo Inter-American Observatory, known as the NOAO Deep Wide-Field Survey and the Multiwavelength Survey by Yale/Chile. Together, these surveys covered an area of the sky 50 times larger than the size of the full Moon and more than 5,000 times larger than the famous Hubble Deep Field.

"We needed data that are very deep over a very wide area to provide statistically meaningful evidence," van Dokkum explains. "As happens so often in science, fresh observations helped inform new conclusions."

Van Dokkum used images from the two surveys to look for telltale tidal features around 126 nearby red galaxies, a color selection biased to select the most massive galaxies in the local universe. These faint tidal features turn out to be quite common, with 53 percent of the galaxies showing tails, broad fans of stars trailing behind them or other obvious asymmetries.

"This implies that there is one galaxy that has endured a major collision and subsequent merger event for every single other ’normal’ undisturbed field galaxy," van Dokkum notes. "Remarkably, the collisions that precede the mergers are ongoing in many cases. This allows us to study galaxies before, during, and after the collisions."

Though there are not many direct, star-to-star encounters in this merger process, galaxy collisions can have profound effects on star formation rates and the shape of the resulting galaxy.

These mergers do not resemble the spectacular mergers of blue spiral galaxies that are featured in several popular Hubble Space Telescope images, but these red galaxy mergers appear to be much more common. Their ubiquity represents a direct confirmation of predictions by the most common models for the formation of large-scale structure in the Universe, with an added benefit of helping solve the apparent-age problem.

"In the past, people equated stellar age with the age of the galaxy," van Dokkum explains. "We have found that, though their stars are generally old, the galaxies that result from these mergers are relatively young."

It is not yet understood why the merging process does not lead to enhanced star formation in the colliding galaxies. It may be that massive black holes in the centers of the galaxies provide the energy to heat or expel the gas that needs to be able to cool in order to form new stars. Ongoing detailed study of the newly found mergers will provide better insight into the roles that black holes play in the formation and evolution of galaxies.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>