Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists describe strange new fluid-like state of matter

08.12.2005


University of Chicago physicists have created a novel state of matter using nothing more than a container of loosely packed sand and a falling marble. They have found that the impacting marble produces a jet of sand grains that briefly behaves like a special type of dense fluid.



"We’re discovering a new type of fluid state that seems to exist in this combination of gas--air in this case--and a dense arrangement of particles," said Heinrich Jaeger, Professor in Physics and Director of the Materials Research Science and Engineering Center at the University of Chicago. "It’s just a most amazing phenomenon."

Jaeger’s team describes the surprising phenomenon in the December issue of the journal Nature Physics. The team consists of graduate students John Royer and Eric Corwin; 2003 University of Chicago physics graduate Andrew Flior; visiting physics graduate student Maria-Luisa Cordero from the Universidad de Chile; Peter Eng, a Senior Research Associate at the University’s James Franck Institute; and Mark Rivers, Associate Director of the University’s Consortium for Advanced Radiation Sources.


Scientists typically have produced new states of matter at ultra-cold temperatures, those nearing absolute zero (minus 497.6 degrees Fahrenheit). In this case, granular materials take on unusual characteristics at room temperature. "The jet acts like an ultra-cold, ultra-dense gas, not in terms of ambient temperature, but in terms of how we define temperature via the random motion of particles. Inside the jet there is very, very little random motion," Jaeger said.

The jetting phenomenon was first reported in 2001 by Sigurdur Thoroddsen and Amy Shen, who were then at the University of Illinois at Urbana-Champaign. Studying the way the characteristics of granular materials changes from solid to fluid has long been a research theme at Chicago’s Center for Materials Research. Thoroddsen and Shen’s work led Jaeger to suggest that Floir reproduce the experiment as the subject of his undergraduate honors thesis.

Meanwhile, a group led by Detlef Lohse at the University of Twente in the Netherlands used high-speed video and computer simulations to infer how the jet was caused by gravity as material rushed in to fill the void left behind by the impacting object.

But to actually demonstrate the underlying cause of the jet’s formation, the Chicago team needed very fast, non-invasive tracking of the interior of the sand. To this end, the Chicago scientists used high-speed X-ray radiography. Taken at 5,000 frames per second, the X-ray images were the fastest ever taken at Argonne National Laboratory’s Advanced Photon Source, which produces the most brilliant X-ray beams for research in the Western Hemisphere.

The experiments, conducted at both atmospheric pressure and in a vacuum, showed that air compressed between the sand grains provides most of the energy that drives the jet. The University of Twente’s Lohse said he regards the work of Jaeger’s team as "very important."

"The result is totally unexpected," Lohse. "One would think that the effect of air would weaken the jet, but what is the case is just the opposite."

Systematically reducing the pressure, Jaeger’s team observed that the jet, in fact, consisted of two stages. Air pressure exerted little influence on the jet’s initial stage, a thin stream of particles that breaks up into droplets. But air pressure played a key role in forming the jet’s second stage, characterized by a thick column of particles with ripples on its surface.

"One of the biggest questions that we have still not solved is why this jet is so sharply delineated. Why are there these beautiful boundaries? Why isn’t this whole thing just falling apart," Jaeger asked.

Jaeger’s team needed advanced scientific equipment and support from the National Science Foundation and the U.S. Department of Energy to conduct this study. To observe the basic effect, however, "You can do this experiment at home," he said. Take a cup of powdered sugar and pour it into another container to ensure that it is loosely packed. Then, drop a marble into the cup. "Once you drop that marble in there, you see that jet emerging, but you have to look fast."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>