Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case researchers discover methods to find ’needles in haystack’ in data

08.12.2005


Create powerful statistical techniques to detect signals



A Case Western Reserve University research team from physics and statistics has recently created innovative statistical techniques that improve the chances of detecting a signal in large data sets. The new techniques can not only search for the "needle in the haystack" in particle physics, but also have applications in discovering a new galaxy, monitoring transactions for fraud and security risk, identifying the carrier of a virulent disease among millions of people or detecting cancerous tissues in a mammogram.
Case faculty members Ramani Pilla and Catherine Loader from statistics and Cyrus Taylor from physics report their findings in the article, "A New Technique for Finding Needles in Haystacks: A Geometric Approach to Distinguishing between a New Source and Random Fluctuations," December 2, in the journal, Physical Review Letters.

"As haystacks of information grow ever larger--and the needles ever smaller--the search for a signal becomes increasingly difficult to find using traditional approaches. There is a need for sophisticated new statistical methods," the researchers report.



Researchers working with large amounts of data encounter the fundamental problem of determining a real signal from random variation in the data. In many practical problems, a suspected signal may only be a small blip in a noisy experimental background.

The Case team discovered a technique that is built on the principle of comparing a set of summary characteristics for any sub region of the observations with the background variation. From these characteristics, attempts are made to find small regions that appear significantly different from the background--a difference that cannot simply be attributed to random chance.

"Methods used in high-energy particle physics problems traditionally have searched for any departure from a background model; that is, anything that is not a haystack," said Pilla, the project leader. "Our method efficiently incorporates information about the type of disorder expected, thereby enabling us to find the signal of interest more accurately."

At the core of the breakthrough is the idea of posing the problem in terms of a "hypothesis-based testing" paradigm to detect statistical disorder in the data. The method further exploits the flexibility behind a long-established geometric formula in creating a technique that significantly enhances the ability to distinguish a signal.

The researchers said the challenge is two-fold: defining efficient test statistics, and determining the critical cut-off. That is, to help the scientist find what is random variation as opposed to what is the signal. The detection problem involves a large number of comparisons, and the researchers caution that experimentalists should not be fooled into false discoveries by random variation.

"The experimenter wants to control the experiment-wise error rate: if there is nothing in the data, then there must be minimal probability of falsely discovering a signal. On the other hand, we want to maximize our chance of discovering any real signal that may be present in the massive data set," said Loader.

"The probabilistic problem associated with this scenario is reduced to one of finding the areas of certain regions on the surface of high-dimensional spheres," explains Pilla.

The Case researchers then exploit the geometric methods pioneered in 1939 by Harold Hotelling and Hermann Weyl. They tested the statistical techniques by using computer simulated particle physics experiments that mimic the real experiments conducted in colliders to demonstrate that the new technique significantly increased detection probabilities.

"In high-energy particle physics and astrophysics problems, chi-square goodness-of-fit tests are widely employed, although they have relatively low power to detect the signal," notes Taylor. "Through my collaborative work with Professors Pilla and Loader, we will be able to develop powerful statistical tests for detecting a signal from noisy data with high probability, a fundamental problem encountered in many scientific disciplines."

Taylor added that "conducting experiments in a particle collider may cost tens of millions of dollars. Improving efficiency in the analysis of experimental results can lead to enormous cost savings. Furthermore, we can obtain the same results with much smaller experiments, or effectively find much smaller departures from the background model."

"Detecting a real signal (the needle) present in random and chaotic data (the haystack) will lead to scientific success," conclude the researchers.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>