Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case researchers discover methods to find ’needles in haystack’ in data

08.12.2005


Create powerful statistical techniques to detect signals



A Case Western Reserve University research team from physics and statistics has recently created innovative statistical techniques that improve the chances of detecting a signal in large data sets. The new techniques can not only search for the "needle in the haystack" in particle physics, but also have applications in discovering a new galaxy, monitoring transactions for fraud and security risk, identifying the carrier of a virulent disease among millions of people or detecting cancerous tissues in a mammogram.
Case faculty members Ramani Pilla and Catherine Loader from statistics and Cyrus Taylor from physics report their findings in the article, "A New Technique for Finding Needles in Haystacks: A Geometric Approach to Distinguishing between a New Source and Random Fluctuations," December 2, in the journal, Physical Review Letters.

"As haystacks of information grow ever larger--and the needles ever smaller--the search for a signal becomes increasingly difficult to find using traditional approaches. There is a need for sophisticated new statistical methods," the researchers report.



Researchers working with large amounts of data encounter the fundamental problem of determining a real signal from random variation in the data. In many practical problems, a suspected signal may only be a small blip in a noisy experimental background.

The Case team discovered a technique that is built on the principle of comparing a set of summary characteristics for any sub region of the observations with the background variation. From these characteristics, attempts are made to find small regions that appear significantly different from the background--a difference that cannot simply be attributed to random chance.

"Methods used in high-energy particle physics problems traditionally have searched for any departure from a background model; that is, anything that is not a haystack," said Pilla, the project leader. "Our method efficiently incorporates information about the type of disorder expected, thereby enabling us to find the signal of interest more accurately."

At the core of the breakthrough is the idea of posing the problem in terms of a "hypothesis-based testing" paradigm to detect statistical disorder in the data. The method further exploits the flexibility behind a long-established geometric formula in creating a technique that significantly enhances the ability to distinguish a signal.

The researchers said the challenge is two-fold: defining efficient test statistics, and determining the critical cut-off. That is, to help the scientist find what is random variation as opposed to what is the signal. The detection problem involves a large number of comparisons, and the researchers caution that experimentalists should not be fooled into false discoveries by random variation.

"The experimenter wants to control the experiment-wise error rate: if there is nothing in the data, then there must be minimal probability of falsely discovering a signal. On the other hand, we want to maximize our chance of discovering any real signal that may be present in the massive data set," said Loader.

"The probabilistic problem associated with this scenario is reduced to one of finding the areas of certain regions on the surface of high-dimensional spheres," explains Pilla.

The Case researchers then exploit the geometric methods pioneered in 1939 by Harold Hotelling and Hermann Weyl. They tested the statistical techniques by using computer simulated particle physics experiments that mimic the real experiments conducted in colliders to demonstrate that the new technique significantly increased detection probabilities.

"In high-energy particle physics and astrophysics problems, chi-square goodness-of-fit tests are widely employed, although they have relatively low power to detect the signal," notes Taylor. "Through my collaborative work with Professors Pilla and Loader, we will be able to develop powerful statistical tests for detecting a signal from noisy data with high probability, a fundamental problem encountered in many scientific disciplines."

Taylor added that "conducting experiments in a particle collider may cost tens of millions of dollars. Improving efficiency in the analysis of experimental results can lead to enormous cost savings. Furthermore, we can obtain the same results with much smaller experiments, or effectively find much smaller departures from the background model."

"Detecting a real signal (the needle) present in random and chaotic data (the haystack) will lead to scientific success," conclude the researchers.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017 | Power and Electrical Engineering

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>