Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rain, winds and haze during the descent to Titan

01.12.2005


The high-resolution images taken in Titan’s atmosphere by the Descent Imager/Spectral Radiometer (DISR) were spectacular, but not the only surprises obtained during descent. Both DISR and the Doppler Wind Experiment data have given Huygens scientists much to think about.



The irreversible conversion of methane into other hydrocarbons in Titan’s stratosphere implies a surface or subsurface ’reservoir’ of methane. Although the NASA/ESA/ASI Cassini orbiter has not seen a global surface reservoir, and DISR images do not show liquid hydrocarbon pools on the surface either, this instrument’s images do reveal the traces of flowing liquid.

The DISR imagers provided views of Titan’s previously unseen surface, thus allowing a deeper understanding of the moon’s geology. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands, possibly dry lake or river beds.


Images taken after landing in one of these lowland areas show more than 50 stones which vary between 3 mm and 15 cm in diameter. No rocks larger than 15 cm are seen. This size distribution suggests that rocks larger than 15 cm cannot be transported to the lakebed, while small pebbles (less than 5 cm) are quickly removed from the surface.

From these features, along with apparent ’ponds’ and elongated ’islands’ oriented parallel to the ’coastline’, the scientists can propose explanations for the nature of the brightness variations spread throughout the images.

They appear to be controlled by a flow of ’runny’ liquids (consistent with methane, ethane or both) down slopes, whether caused by precipitation or springs.

The light–dark brightness difference can be explained by the ’irrigation’ of the bright terrain, with darker material being removed and carried into the channels, which discharge into the region ’offshore’, thereby darkening it.

’Aeolian’ (wind) processes, such as gusts, and Titan’s low gravity may aid this migration.

The surface science lamp worked exactly as planned, permitting surface reflection measurements even in strong methane absorption bands. Operations after landing included the collection of successive images as well as spectral reflectance measurements of the surface illuminated by the lamp from an assumed height of roughly 30 cm.

The infrared reflectance spectrum — the rise and fall of brightness at different wavelengths of light — measured for the surface is unlike any other in the Solar System. There are signs of organic materials such as ’tholins’, and dips in the brightness consistent with water ice are also seen. However, the most intriguing feature in the surface spectrum is an infrared signature of a material not matched by any combination of spectra of ices and complex organics found on Earth.

These spectra also show a methane abundance near the surface of 5 +/-1%, which is in precise agreement with the 4.9% in situ measurements made by the probe’s Gas Chromatograph Mass Spectrometer. The corresponding relative humidity of methane is about 50%.

Therefore, the surface is not ’bone dry’, but this does rule out extensive ground fogs in the vicinity of the landing site caused by methane alone.

Taken together, these new observations make clearer the role of methane in shaping the surface of Titan and how it is recycled into the atmosphere. The substantial relative humidity of methane and the obvious evidence of fluid flow on the surface provide evidence for methane ’rain’ and subsequent evaporation. Some hints of ’cryovolcanic’ flows may also be present in the images.

By assembling the panoramic mosaics, the Huygens scientists could determine the descent trajectory as part of an iterative process of image reconstruction. The trajectory could be used to derive the probe ground track and see how wind speeds changed with altitude.

They found that the probe drifted steadily east-northeast due to Titan’s ’prograde’ (in the direction of rotation of the moon) winds. It slowed from near 30 to 10 m/s between altitudes of 50 and 30 km and then slowed more rapidly (from 10 to 4 m/s) between altitudes of 30 and 20 km.

The winds dropped to zero and reversed at around 7 km, near the expected top of the planetary boundary layer, producing a west-northwestwardly motion for about 1 km during the last 15 minutes of the descent.

The Doppler Wind Experiment (DWE) data which were obtained from two Earth-based telescopes have confirmed the findings of the DISR and provided a high-resolution vertical profile of Titan’s winds.

The DWE not only confirmed the considerable turbulence above 120 km and the eastward drift in prograde winds, but also the weak retrograde (westward) winds near the surface.

Significantly, this experiment provided the first in situ confirmation of Titan’s ’superrotation’ (the atmosphere is moving faster than the surface). Unexpectedly, it also found a layer of very low wind velocity between 60 and 100 km altitude, which is presently unexplained.

Franco Bonacina | alfa
Further information:
http://www.esa.int/SPECIALS/Results_from_Mars_Express_and_Huygens/SEM23TULWFE_0.html

More articles from Physics and Astronomy:

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>