Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Dwarf that Carries a World


HARPS Instrument Finds Neptune-Mass Exoplanet Around Small Star

A team of French and Swiss astronomers [1] have discovered one of the lightest exoplanets ever found using the HARPS instrument [2] on ESO’s 3.6-m telescope at La Silla (Chile). The new planet orbits a star belonging to the class of red dwarfs. As these stars are very common, this discovery proves crucial in the census of other planetary systems.

"Our finding possibly means that planets are rather frequent around the smallest stars," says Xavier Delfosse, from the Laboratoire d’Astrophysique de Grenoble (France) and co-author of the paper relating the work. "It certainly tells us that red dwarfs are ideal targets for the search for exoplanets."

The host star, Gl 581 [3], is located 20.5 light-years away in the Libra constellation (The Scales), and has a mass of only one third the mass of the Sun. Such red dwarfs are at least 50 times fainter than the Sun and are the most common stars in our Galaxy: among the 100 closest stars to the Sun, 80 belong to this class.

Being so numerous in our vicinity, it is thus fundamental to know if such stars also harbour planets. Previous surveys were rather unsuccessful: observations of about 200 red dwarfs revealed only 2 with planets.

"But previous surveys may have missed many planets due to their insufficient precision," says Stéphane Udry, from the Geneva Observatory and co-author of the work. "This is why we decided to make use of the ultra-precise, second generation, HARPS spectrograph. Our new result indicates this was the right strategy."

The newly found planet is about 17 times the Earth’s mass, or about the mass of Neptune. It is therefore one of the smallest ever found [4]. It is rather close to its host star and completes a full circle in only 5.4 days: the mean distance is about 6 million kilometres. By comparison, Mercury, the closest planet to the Sun, is at a distance of 58 million kilometres and completes an orbit in 88 days. Being so close, this alien world must be very hot, about 150 degrees.

The planet was revealed by the wobble it induces on the host star. With the HARPS very precise measurements, the astronomers found the star to move back and forth with a maximum velocity of 13 metres/second, or a little bit less than 50 km/h.

[1]: The team is composed of Xavier Bonfils (Laboratoire d’Astrophysique de Grenoble (LAOG), France, and Geneva Observatory, Switzerland), Thierry Forveille (CFHT Corporation, Hawaii, USA and LAOG), Xavier Delfosse and Christian Perrier (LAOG), Stéphane Udry, Michel Mayor, Francesco Pepe, and Didier Queloz (Geneva Observatory), François Bouchy (Laboratoire d’Astrophysique de Marseille, France), and Jean-Louis Bertaux (Service d’Aéronomie du CNRS, France).

[2]: HARPS (High Accuracy Radial Velocity for Planetary Searches) is the most precise spectrograph to date, measuring radial velocities with a precision better than 1 m/s, or 3.6 km/h.

[3]: Gl 581, or Gliese 581, is the 581th entry in the Gliese Catalogue, which lists all known stars within 25 parsecs (81.5 light years) of the Sun. It was originally compiled by Gliese and published in 1969, and later updated by Gliese and Jahreiss in 1991.

[4]: Of the 170 exoplanets known today, 5 are possibly less massive than the one orbiting Gl 581: Gliese 876d (7.3 Earth’s masses, or 7.3 ME), HD 160691 d (14 ME), 55 Cnc e (14.4 ME), HD 212301 b (14.4 ME) and HD 4308 b (15 ME). The masses indicated are in fact minimum masses, as the inclination of the system is unknown. One Jupiter mass is 18.6 Neptune masses or 319 Earth masses.

Henri Boffin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>