Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Dwarf that Carries a World

01.12.2005


HARPS Instrument Finds Neptune-Mass Exoplanet Around Small Star

A team of French and Swiss astronomers [1] have discovered one of the lightest exoplanets ever found using the HARPS instrument [2] on ESO’s 3.6-m telescope at La Silla (Chile). The new planet orbits a star belonging to the class of red dwarfs. As these stars are very common, this discovery proves crucial in the census of other planetary systems.

"Our finding possibly means that planets are rather frequent around the smallest stars," says Xavier Delfosse, from the Laboratoire d’Astrophysique de Grenoble (France) and co-author of the paper relating the work. "It certainly tells us that red dwarfs are ideal targets for the search for exoplanets."



The host star, Gl 581 [3], is located 20.5 light-years away in the Libra constellation (The Scales), and has a mass of only one third the mass of the Sun. Such red dwarfs are at least 50 times fainter than the Sun and are the most common stars in our Galaxy: among the 100 closest stars to the Sun, 80 belong to this class.

Being so numerous in our vicinity, it is thus fundamental to know if such stars also harbour planets. Previous surveys were rather unsuccessful: observations of about 200 red dwarfs revealed only 2 with planets.

"But previous surveys may have missed many planets due to their insufficient precision," says Stéphane Udry, from the Geneva Observatory and co-author of the work. "This is why we decided to make use of the ultra-precise, second generation, HARPS spectrograph. Our new result indicates this was the right strategy."

The newly found planet is about 17 times the Earth’s mass, or about the mass of Neptune. It is therefore one of the smallest ever found [4]. It is rather close to its host star and completes a full circle in only 5.4 days: the mean distance is about 6 million kilometres. By comparison, Mercury, the closest planet to the Sun, is at a distance of 58 million kilometres and completes an orbit in 88 days. Being so close, this alien world must be very hot, about 150 degrees.

The planet was revealed by the wobble it induces on the host star. With the HARPS very precise measurements, the astronomers found the star to move back and forth with a maximum velocity of 13 metres/second, or a little bit less than 50 km/h.

[1]: The team is composed of Xavier Bonfils (Laboratoire d’Astrophysique de Grenoble (LAOG), France, and Geneva Observatory, Switzerland), Thierry Forveille (CFHT Corporation, Hawaii, USA and LAOG), Xavier Delfosse and Christian Perrier (LAOG), Stéphane Udry, Michel Mayor, Francesco Pepe, and Didier Queloz (Geneva Observatory), François Bouchy (Laboratoire d’Astrophysique de Marseille, France), and Jean-Louis Bertaux (Service d’Aéronomie du CNRS, France).

[2]: HARPS (High Accuracy Radial Velocity for Planetary Searches) is the most precise spectrograph to date, measuring radial velocities with a precision better than 1 m/s, or 3.6 km/h.

[3]: Gl 581, or Gliese 581, is the 581th entry in the Gliese Catalogue, which lists all known stars within 25 parsecs (81.5 light years) of the Sun. It was originally compiled by Gliese and published in 1969, and later updated by Gliese and Jahreiss in 1991.

[4]: Of the 170 exoplanets known today, 5 are possibly less massive than the one orbiting Gl 581: Gliese 876d (7.3 Earth’s masses, or 7.3 ME), HD 160691 d (14 ME), 55 Cnc e (14.4 ME), HD 212301 b (14.4 ME) and HD 4308 b (15 ME). The masses indicated are in fact minimum masses, as the inclination of the system is unknown. One Jupiter mass is 18.6 Neptune masses or 319 Earth masses.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/pr-30-05.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>