Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AMBER looks into the cradle of planets

29.11.2005


International team of astronomers uses a new infrared interferometer at the VLT to get surprising views of cosmic disks of dust and gas



A research team investigated a disk of gas and dust surrounding a young star, as well as the stellar winds which emanate from that star. The team found unique, previously unknown characteristics of the innermost environment around the star. Another research group carried out the first-ever analysis of the gas and dust material surrounding a "supergiant" star. All of the observations have now been published in the renowned journal Astronomy & Astrophysics.

In order to investigate the immediate environment of a young star with unprecedented accuracy, an international team of researchers led by Fabien Malbet of the University of Grenoble used two telescopes of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO), which is located on the Cerro Paranal mountain in Chile. Each of the huge telescope mirrors has a diameter of 8.2 metres; the distance between them is 47 meters. Both telescopes took pictures in the infrared spectral range of the young star MWC 297. Combining these infrared images in the central VLTI beam combination laboratory provides a very high angular resolution. This technique is known as infrared interferometry. The new interferometric instrument AMBER at the VLTI allowed both, the interferometric combination of images from both telescopes and the spectroscopic decomposition of the light.


The observation and analysis of the young star MWC 297 is one of the first results of the new AMBER instrument. It showed that MWC 297 is surrounded by a huge disk of dust and gas, known as an accretion disk. The disk emits radiation of many different wavelengths within the infrared range. The star also has an intense stellar wind blowing out at high speed. In the infrared range, the wind only radiates the light of a single hydrogen emission line, the Brackett-gamma line. AMBER made it possible to measure both components of the light separately and thus, for the first time ever, to determine the physical extent of both the accretion disk and the stellar wind. The disk’s infrared radiation is produced in a region with a size of 1.75 Astronomical Units. One Astronomical Unit represents the distance from the earth to the sun: 150 million kilometers. The stellar wind’s hydrogen light, on the other hand, comes from a considerably larger area of about 2.5 astronomical units.

The scientists used a new modelling method to evaluate the measured data, interpreting their observations of both the accretion disk and the stellar wind. The star emits the stellar wind’s ionised gas in almost all spatial directions. Although the gas near the disk moves at an expansion velocity of only 60 kilometers per second, the stellar wind in the direction of the poles blows at up to 600 kilometers per second. With AMBER, scientists can investigate the physical properties of dust and gas in the immediate vicinity of stars with the highest resolution ever. These are the regions where planets form and we can get entirely new information about conditions underlying the process.

The second AMBER research project, led by Armando Domiciano de Souza at the Max Planck Institute for Radio Astronomy in Bonn, involved combining light from three of the four large 8.2 meter telescopes at the VLTI. Instead of a young star, the observed object was a massive, evolved star named CPD-57°2874. This "supergiant star" is about 10,000 times more luminous and about 50 times larger than our sun. At a distance of 8,000 light years, it is some 10 times further from the Earth than MWC 297. AMBER’s detailed observations of this star have contributed to a better understanding of the physical properties of the material in its environment.

The AMBER interferometric instrument was built for ESO by an international consortium which includes the following institutions: Laboratoire Universitaire d’Astrophysique de Nice, Laboratoire d’Astrophysique de l’Observatoire de Grenoble, Laboratoire Gemini de l’Observatoire de la Cote d’Azur, Max Planck Institute for Radio Astronomy in Bonn, and Osservatorio Astrofisico di Arcetri in Florence. The Principal Investigator of the project is Romain Petrov at the University of Nice.

The development of the infrared camera and the data recording software was led by Professor Gerd Weigelt, Director of the Max Planck Institute for Radio Astronomy in Bonn.

Prof. Gerd Weigelt | EurekAlert!
Further information:
http://www.mpifr-bonn.mpg.de

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>