Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant breakthrough in the design and production of electromechanical nanocomponents based on carbon nanotube structures

29.11.2005


Two studies on carbon nanotubes by CEA DRECAM researchers have just been published in Physical Review Letters and Applied Physics Letters. The first study presents an innovative and experimentally verified theoretical law to predict and characterize the deformation of a carbon nanotube subject to an electrical field. The second study applies this knowledge to produce a nano-switch using innovative dimensioning and positioning control techniques.



MEMs technologies (microelectromechanical systems) combine mechanical, optical, electromagnetic, thermal and fluidic concepts with electronics to produce chip-based integrated systems performing sensor and/or actuator functions. MEMs are currently used in a large number of sectors such as the automobile industry (airbag sensors), the computer peripherals industry (inkjet printer cartridges), and also the defense, medical and space industries. These technologies accompany the advances in microelectronic miniaturization. For sizes less than one micron, the term NEMs is used (nanoelectromechanical systems). However, below a certain size, entirely different production techniques must be employed, one the one hand due to preeminent surface effects very difficult to control, and the other because the physics of the phenomena is susceptible to change in the quantic realm.

Carbon nanotubes are excellent candidates for the production of NEMs. The assembly of nano-objects is an elegant solution to the increasing difficulty of machining massive materials at nanometric scale. A few examples of carbon nanotube NEMs have been published in the literature over the past 4 or 5 years. However, the development of this field of research was limited by the absence of dimensioning control tools for carbon nanotube NEMs.


The study by CEA DRECAM researchers published in Physical Review Letters is an important first step toward the development of generic dimensioning tools for carbon nanotube NEMs. It concerns a carbon nanotube attached at both ends and suspended above a conductor support. When voltage is applied to the conductor, the nanotube is subject to an attractive electrostatic force and deforms. The CEA researchers have derived a scale law that links the deformation of the nanotube to geometric parameters (diameter, suspended length, suspension height) and electrostatic parameters (applied voltage, voltage potential waveform). This law enables the dimensioning of all NEMs based on suspended and electrostatically activated nanotube structures. The researchers were able to verify this law using a technique to directly measure nanotube deformations by atomic force microscopy.

In Applied Physics Letters, the CEA researchers announce the production of a nano-switch by combining knowledge of carbon nanotube deformation under the effect of an electric field with a technique enabling controlled positioning of nanotubes on a surface. When a voltage potential is applied to a carbon nanotube, it deforms and comes into contact with an electrode. Although various teams throughout the world have already produced a few nanocomponents, the NEMs developed at the CEA involved the implementation of techniques to control the positioning of the nanotubes. This is an additional step toward the controlled production of nanocomponents with predefined properties. In addition, once the nanotube is in contact with the electrode, the Van Der Waals interactions maintain the contact even under very low voltage, which can be advantageously used for the production of memories.

Many applications can be considered for NEMs based on suspended and electrostatically deformed nanotubes, ranging from ultra-low force sensors to oscillators and high-frequency signal switches for telecommunications. The nano-switch and the electronic control system must be integrated on the same chip. This hybridization problem is at the heart of NANO-RF, a new European project coordinated by the Federal Polytechnic Institute of Lausanne and involving the participation of various CEA laboratories , the CNRS, and three other European partners.

Pascal Newton | alfa
Further information:
http://www.cea.fr

More articles from Physics and Astronomy:

nachricht Dust pillars of destruction reveal impact of cosmic wind on galaxy evolution
28.07.2015 | Yale University

nachricht Treasure hunting in archive data reveals clues about black holes’ diet
23.07.2015 | Max-Planck-Institut für extraterrestrische Physik, Garching

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>