Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant breakthrough in the design and production of electromechanical nanocomponents based on carbon nanotube structures

29.11.2005


Two studies on carbon nanotubes by CEA DRECAM researchers have just been published in Physical Review Letters and Applied Physics Letters. The first study presents an innovative and experimentally verified theoretical law to predict and characterize the deformation of a carbon nanotube subject to an electrical field. The second study applies this knowledge to produce a nano-switch using innovative dimensioning and positioning control techniques.



MEMs technologies (microelectromechanical systems) combine mechanical, optical, electromagnetic, thermal and fluidic concepts with electronics to produce chip-based integrated systems performing sensor and/or actuator functions. MEMs are currently used in a large number of sectors such as the automobile industry (airbag sensors), the computer peripherals industry (inkjet printer cartridges), and also the defense, medical and space industries. These technologies accompany the advances in microelectronic miniaturization. For sizes less than one micron, the term NEMs is used (nanoelectromechanical systems). However, below a certain size, entirely different production techniques must be employed, one the one hand due to preeminent surface effects very difficult to control, and the other because the physics of the phenomena is susceptible to change in the quantic realm.

Carbon nanotubes are excellent candidates for the production of NEMs. The assembly of nano-objects is an elegant solution to the increasing difficulty of machining massive materials at nanometric scale. A few examples of carbon nanotube NEMs have been published in the literature over the past 4 or 5 years. However, the development of this field of research was limited by the absence of dimensioning control tools for carbon nanotube NEMs.


The study by CEA DRECAM researchers published in Physical Review Letters is an important first step toward the development of generic dimensioning tools for carbon nanotube NEMs. It concerns a carbon nanotube attached at both ends and suspended above a conductor support. When voltage is applied to the conductor, the nanotube is subject to an attractive electrostatic force and deforms. The CEA researchers have derived a scale law that links the deformation of the nanotube to geometric parameters (diameter, suspended length, suspension height) and electrostatic parameters (applied voltage, voltage potential waveform). This law enables the dimensioning of all NEMs based on suspended and electrostatically activated nanotube structures. The researchers were able to verify this law using a technique to directly measure nanotube deformations by atomic force microscopy.

In Applied Physics Letters, the CEA researchers announce the production of a nano-switch by combining knowledge of carbon nanotube deformation under the effect of an electric field with a technique enabling controlled positioning of nanotubes on a surface. When a voltage potential is applied to a carbon nanotube, it deforms and comes into contact with an electrode. Although various teams throughout the world have already produced a few nanocomponents, the NEMs developed at the CEA involved the implementation of techniques to control the positioning of the nanotubes. This is an additional step toward the controlled production of nanocomponents with predefined properties. In addition, once the nanotube is in contact with the electrode, the Van Der Waals interactions maintain the contact even under very low voltage, which can be advantageously used for the production of memories.

Many applications can be considered for NEMs based on suspended and electrostatically deformed nanotubes, ranging from ultra-low force sensors to oscillators and high-frequency signal switches for telecommunications. The nano-switch and the electronic control system must be integrated on the same chip. This hybridization problem is at the heart of NANO-RF, a new European project coordinated by the Federal Polytechnic Institute of Lausanne and involving the participation of various CEA laboratories , the CNRS, and three other European partners.

Pascal Newton | alfa
Further information:
http://www.cea.fr

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>