Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant breakthrough in the design and production of electromechanical nanocomponents based on carbon nanotube structures

29.11.2005


Two studies on carbon nanotubes by CEA DRECAM researchers have just been published in Physical Review Letters and Applied Physics Letters. The first study presents an innovative and experimentally verified theoretical law to predict and characterize the deformation of a carbon nanotube subject to an electrical field. The second study applies this knowledge to produce a nano-switch using innovative dimensioning and positioning control techniques.



MEMs technologies (microelectromechanical systems) combine mechanical, optical, electromagnetic, thermal and fluidic concepts with electronics to produce chip-based integrated systems performing sensor and/or actuator functions. MEMs are currently used in a large number of sectors such as the automobile industry (airbag sensors), the computer peripherals industry (inkjet printer cartridges), and also the defense, medical and space industries. These technologies accompany the advances in microelectronic miniaturization. For sizes less than one micron, the term NEMs is used (nanoelectromechanical systems). However, below a certain size, entirely different production techniques must be employed, one the one hand due to preeminent surface effects very difficult to control, and the other because the physics of the phenomena is susceptible to change in the quantic realm.

Carbon nanotubes are excellent candidates for the production of NEMs. The assembly of nano-objects is an elegant solution to the increasing difficulty of machining massive materials at nanometric scale. A few examples of carbon nanotube NEMs have been published in the literature over the past 4 or 5 years. However, the development of this field of research was limited by the absence of dimensioning control tools for carbon nanotube NEMs.


The study by CEA DRECAM researchers published in Physical Review Letters is an important first step toward the development of generic dimensioning tools for carbon nanotube NEMs. It concerns a carbon nanotube attached at both ends and suspended above a conductor support. When voltage is applied to the conductor, the nanotube is subject to an attractive electrostatic force and deforms. The CEA researchers have derived a scale law that links the deformation of the nanotube to geometric parameters (diameter, suspended length, suspension height) and electrostatic parameters (applied voltage, voltage potential waveform). This law enables the dimensioning of all NEMs based on suspended and electrostatically activated nanotube structures. The researchers were able to verify this law using a technique to directly measure nanotube deformations by atomic force microscopy.

In Applied Physics Letters, the CEA researchers announce the production of a nano-switch by combining knowledge of carbon nanotube deformation under the effect of an electric field with a technique enabling controlled positioning of nanotubes on a surface. When a voltage potential is applied to a carbon nanotube, it deforms and comes into contact with an electrode. Although various teams throughout the world have already produced a few nanocomponents, the NEMs developed at the CEA involved the implementation of techniques to control the positioning of the nanotubes. This is an additional step toward the controlled production of nanocomponents with predefined properties. In addition, once the nanotube is in contact with the electrode, the Van Der Waals interactions maintain the contact even under very low voltage, which can be advantageously used for the production of memories.

Many applications can be considered for NEMs based on suspended and electrostatically deformed nanotubes, ranging from ultra-low force sensors to oscillators and high-frequency signal switches for telecommunications. The nano-switch and the electronic control system must be integrated on the same chip. This hybridization problem is at the heart of NANO-RF, a new European project coordinated by the Federal Polytechnic Institute of Lausanne and involving the participation of various CEA laboratories , the CNRS, and three other European partners.

Pascal Newton | alfa
Further information:
http://www.cea.fr

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>