Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant breakthrough in the design and production of electromechanical nanocomponents based on carbon nanotube structures

29.11.2005


Two studies on carbon nanotubes by CEA DRECAM researchers have just been published in Physical Review Letters and Applied Physics Letters. The first study presents an innovative and experimentally verified theoretical law to predict and characterize the deformation of a carbon nanotube subject to an electrical field. The second study applies this knowledge to produce a nano-switch using innovative dimensioning and positioning control techniques.



MEMs technologies (microelectromechanical systems) combine mechanical, optical, electromagnetic, thermal and fluidic concepts with electronics to produce chip-based integrated systems performing sensor and/or actuator functions. MEMs are currently used in a large number of sectors such as the automobile industry (airbag sensors), the computer peripherals industry (inkjet printer cartridges), and also the defense, medical and space industries. These technologies accompany the advances in microelectronic miniaturization. For sizes less than one micron, the term NEMs is used (nanoelectromechanical systems). However, below a certain size, entirely different production techniques must be employed, one the one hand due to preeminent surface effects very difficult to control, and the other because the physics of the phenomena is susceptible to change in the quantic realm.

Carbon nanotubes are excellent candidates for the production of NEMs. The assembly of nano-objects is an elegant solution to the increasing difficulty of machining massive materials at nanometric scale. A few examples of carbon nanotube NEMs have been published in the literature over the past 4 or 5 years. However, the development of this field of research was limited by the absence of dimensioning control tools for carbon nanotube NEMs.


The study by CEA DRECAM researchers published in Physical Review Letters is an important first step toward the development of generic dimensioning tools for carbon nanotube NEMs. It concerns a carbon nanotube attached at both ends and suspended above a conductor support. When voltage is applied to the conductor, the nanotube is subject to an attractive electrostatic force and deforms. The CEA researchers have derived a scale law that links the deformation of the nanotube to geometric parameters (diameter, suspended length, suspension height) and electrostatic parameters (applied voltage, voltage potential waveform). This law enables the dimensioning of all NEMs based on suspended and electrostatically activated nanotube structures. The researchers were able to verify this law using a technique to directly measure nanotube deformations by atomic force microscopy.

In Applied Physics Letters, the CEA researchers announce the production of a nano-switch by combining knowledge of carbon nanotube deformation under the effect of an electric field with a technique enabling controlled positioning of nanotubes on a surface. When a voltage potential is applied to a carbon nanotube, it deforms and comes into contact with an electrode. Although various teams throughout the world have already produced a few nanocomponents, the NEMs developed at the CEA involved the implementation of techniques to control the positioning of the nanotubes. This is an additional step toward the controlled production of nanocomponents with predefined properties. In addition, once the nanotube is in contact with the electrode, the Van Der Waals interactions maintain the contact even under very low voltage, which can be advantageously used for the production of memories.

Many applications can be considered for NEMs based on suspended and electrostatically deformed nanotubes, ranging from ultra-low force sensors to oscillators and high-frequency signal switches for telecommunications. The nano-switch and the electronic control system must be integrated on the same chip. This hybridization problem is at the heart of NANO-RF, a new European project coordinated by the Federal Polytechnic Institute of Lausanne and involving the participation of various CEA laboratories , the CNRS, and three other European partners.

Pascal Newton | alfa
Further information:
http://www.cea.fr

More articles from Physics and Astronomy:

nachricht Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser
05.02.2016 | Tohoku University

nachricht Scientists create new state of matter: Quantum gas, liquid and crystal all-in-one
02.02.2016 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>