Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotube foams flex and rebound with super compressibility

25.11.2005


Buckled carbon nanotubes under compression. Credit: Cao/RPI


Carbon nanotubes have enticed researchers since their discovery in 1991, offering an impressive combination of high strength and low weight. Now a new study suggests that they also act like super-compressible springs, opening the door to foam-like materials for just about any application where strength and flexibility are needed, from disposable coffee cups to the exterior of the space shuttle.

The research, which is reported in the Nov. 25 issue of the journal Science, shows that films of aligned multiwalled carbon nanotubes can act like a layer of mattress springs, flexing and rebounding in response to a force. But unlike a mattress, which can sag and lose its springiness, these nanotube foams maintain their resilience even after thousands of compression cycles.

In foams that exist today, strength and flexibility are opposing properties: as one goes up, the other must go down. With carbon nanotubes, no such tradeoff exists.



"Carbon nanotubes display an exceptional combination of strength, flexibility, and low density, making them attractive and interesting materials for producing strong, ultra-light foam-like structures," says Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer Polytechnic Institute and coauthor of the paper.

Carbon nanotubes are made from graphite-like carbon, where the atoms are arranged like a rolled-up tube of chicken wire. Ajayan and a team of researchers at the University of Hawaii at Manoa and the University of Florida subjected films of vertically aligned nanotubes to a battery of tests, demonstrating their impressive strength and resilience.

"These nanotubes can be squeezed to less than 15 percent of their normal lengths by buckling and folding themselves like springs," says lead author Anyuan Cao, who did much of the work as a postdoctoral researcher in AjayanâTMs lab and is now assistant professor of mechanical engineering at the University of Hawaii at Manoa. After every cycle of compression, the nanotubes unfold and recover, producing a strong cushioning effect.

The thickness of the nanotube foams decreased slightly after several hundred cycles, but then quickly stabilized and remained constant, even up to 10,000 cycles. When compared with conventional foams designed to sustain large strains, nanotube foams recovered very quickly and exhibited higher compressive strength, according to the researchers. Throughout the entire experiments, the foams did not fracture, tear, or collapse.

And their intriguing properties do not end there. Nanotubes also are stable in the face of extreme chemical environments, high temperatures, and humidity all of which adds up to a number of possible applications, from flexible electromechanical systems to coatings for absorbing energy.

The foams are just the latest in a long line of nanotube-based materials that have been produced through collaborations with AjayanTMs lab, all of which have exhibited tantalizing properties. Ajayan and his colleagues from the University of Hawaii at Manoa recently developed tiny brushes with bristles made from carbon nanotubes, which could be used for tasks that range from cleaning microscopic surfaces to serving as electrical contacts. And in collaboration with researchers from the University of Akron, Ajayan and his team created artificial gecko feet with 200 times the sticking power of the real thing.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>