Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Next Generation Light Source


The Technische Universität Dresden (TU Dresden) partakes in one of the world’s largest projects on the development of innovative organic light-emitting diodes (OLEDs). Scientists at the Institute of Applied Photophysics have been developing highly efficient white organic light-emitting diodes which could perhaps serve as the light sources of the future.

More than 20 of Europe’s leading companies and research institutes have joined together in a research project entitled OLLA in order to advance organic light-emitting diode (OLED) technologies for lighting applications. The research team comprises European universities and research institutes as well as leading industrial players like Osram, Philips and Siemens and aims at the further development of light-emitting diodes toward a light source with a long lifetime and a high energy efficiency. “Our goal is a lifetime of 10.000 hours – which is 10 times longer than a standard light-bulb – and an efficiency of 50 lumens per Watt,” says Peter Visser of Philips, project manager of OLLA.

The next generation light source will be both flat – only half a millimetre thin – and light. It will have an extremely long lifetime, using only little energy in spite of its high brightness. Also, it will allow for various shape and colour combinations and a variety of appearances. Until now, OLEDs have primarily been developed for display applications with regard to mobile phones, laptops and televisions; however, they are supposed to serve as light sources in the future, too. Showing excellent characteristics, organic light-emitting diodes could compete with light bulbs and neon tubes in 10 or 15 years time. “In my opinion OLEDs are the ideal office room lighting. They can be attached flat to the ceiling and spread the light diffusely in the entire room,” Professor Karl Leo of the Institute of Applied Photophysics at the TU Dresden explains the benefits of the organic light source.
There is a myriad of possible applications for the innovative lighting technique. With the help of transparent light-emitting diodes windows could for instance be turned into light sources at night.

Scientists have adopted the OLED principle from nature. The basic principle of luminescence can for instance be observed with fireflies. Analysing this phenomenon, researchers noticed that some organic materials are comparable with semiconductors and, thus, are suitable for the transport of electric charges.

Organic light-emitting diodes consist of semiconducting organic layers which are in total only 100 nanometers wide and lie between two electrodes, an anode and a cathode, respectively. If voltage is applied to the electrodes, a current flows through the organic layers and – by the mechanism of electroluminescence – electrical energy is directly converted into light. By applying chemically diverse layers the desired colours can be generated. Currently, the Institute of Applied Photophysics is exploring methods to produce white light-emitting OLEDs based on small organic dye molecules. All processes are vacuum-based to allow for convenient solution-free processing which in turn allows for high reproducibility and yield.

The OLLA project, which is running until the year of 2008, comprises a budget of nearly 20 million Euros. More than half of it is funded by the European Commission’s 6th Framework Programme.

Prof. Dr. Karl Leo | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>