Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein’s Dark Energy Accelerates the Universe

24.11.2005


The genius of Albert Einstein, who added a “cosmological constant” to his equation for the expansion of the universe but later retracted it, may be vindicated by new research published today in the journal Astronomy and Astrophysics.



The enigmatic "dark energy" that drives the acceleration of the Universe behaves just like Einstein’s famed cosmological constant, according to the Supernova Legacy Survey (SNLS), an international team of researchers in France and Toronto and Victoria in Canada, collaborating with large telescope observers in Oxford, Caltech and Berkeley. Their observations reveal that the dark energy behaves like Einstein’s cosmological constant to a precision of 10%.

“The significance is huge,” said Professor Ray Carlberg of the Department of Astronomy and Astrophysics at the University of Toronto. “Our observation is at odds with a number of theoretical ideas about the nature of dark energy that predict that it should change as the universe expands, and as far as we can see, it doesn’t.”


"We have set ourselves a very challenging goal - to distinguish whether the dark energy can be explained by Einstein’s cosmological constant or whether a new physical theory is needed.” Says Dr Isobel Hook of the University of Oxford, “So far our results are consistent with Einstein’s cosmological constant, but the best is still to come. The first year results already represent the largest homogeneous set of distant supernovae, but over the full five years of the survey we will improve our precision more and more. Our goal is a measurement of the nature dark energy that will be a true legacy for years to come."

She added “Before dark energy was being considered, Einstein invented the ’cosmological constant’ to make his equations fit with his ideas about the Universe, but later regretted it, calling it his biggest blunder’. Now we know he may have been closer to the truth than he realised.”

The Supernova Legacy Survey (SNLS) aims to discover and examine 700 distant supernovae to map out the history of the expansion of the universe. The survey confirms earlier discoveries that the expansion of the universe proceeded more slowly in the past and is speeding up today, apparently driven by some unknown form of energy. Since scientists don’t know much about this mysterious new form of energy, they call it “dark energy.”

The researchers made their discovery using an innovative, 340-million pixel camera called Megacam, built by the Canada-France-Hawaii Telescope and the French atomic energy agency, Commissariat à l’Énergie Atomique. “Because of its wide field of view — you can fit four full moons in an image — it allows us to measure simultaneously, and very precisely, several supernovae, which are rare events,” said Pierre Astier, one of the scientists with the Centre national de la recherche scientifique (CNRS) in France.

“Improved observations of distant supernovae are the most immediate way in which we can learn more about the mysterious dark energy,” adds Richard Ellis, professor of astronomy at the California Institute of Technology. “This study is a very big step forward in quantity and quality.”

Study co-author Saul Perlmutter, a physics professor at the University of California, Berkeley, says the findings kick off a dramatic new generation of cosmology work using supernovae. “The data is more beautiful than we could have imagined 10 years ago — a real tribute to the instrument builders, the analysis teams and the large scientific vision of the Canadian and French science communities.”

The SNLS is a collaborative international effort that uses images from the Canada-France-Hawaii Telescope, a 3.6-metre telescope atop Mauna Kea, a dormant Hawaiian volcano. The current results are based on about 20 nights of data, the first of over nearly 200 nights of observing time for this project. The researchers identify the few dozen bright pixels in the 340 million to find distant supernovae. They acquire spectra using some of the largest telescopes on Earth—the Frederick C. Gillett Gemini North Telescope on Mauna Kea, the Gemini South Telescope on the Cerro Pachón mountain in the Chilean Andes, the European Southern Observatory Very Large Telescopes (VLT) at the Paranal Observatory in Atacama, Chile, and the Keck telescopes on Mauna Kea.

In the UK the work has been done by Dr Isobel Hook and her student (Justin Bronder) in Oxford. Their focus has been on obtaining spectra with Gemini to measure redshifts and confirm the supernova types. Only certain types of supernovae are useful for cosmology, namely those classed as "Type Ia" which they identify by particular signatures in their spectra.

The "queue" observing mode used at Gemini and VLT is ideal for this project. When they find good supernova candidates from CFHT they send instructions over the internet to the staff at Gemini and VLT, and they take data for them when the weather conditions are right for the program. The instruments used on the Gemini telescopes for this project are the GMOS - the Gemini Multi-object spectrographs - built in the UK (by the UKATC and University of Durham) and Canada.

“Only the world’s largest optical telescopes — with diameters of eight to 10 metres — are capable of studying distant supernovae in detail by examining the spectrum,” said Dr Isobel Hook.

The current paper is based on about one-tenth of the imaging data that will be obtained by the end of the survey. Future results are expected to double or even triple the precision of these findings and conclusively solve several remaining mysteries about the nature of dark energy.

The research was funded by the Canada-France-Hawaii Telescope, the Particle Physics and Astronomy Research Council (PPARC), the Commissariat à l’Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences de l’Univers du CNRS, the Natural Sciences and Engineering Research Council of Canada, the National Research Council of Canada’s Herzberg Institute of Astrophysics, the Gemini Observatory, the W. M. Keck Observatory and the European Southern Observatory.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>