Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark energy or cosmological constant

24.11.2005


The first results obtained from the SNLS (Supernova Legacy Survey) international collaboration – in which CEA-Dapnia and CNRS (IN2P3 and INSU) are participants – are showing that the mysterious “dark energy” assumed to be responsible for the acceleration in the Universe’s expansion could be Einstein’s cosmological constant. The results were published on Monday 21 November in the journal Astronomy & Astrophysics.



A few years ago, astrophysicists thought that the Universe’s expansion, discovered by Edwin Hubble during the 1920s, was slowing down under the effect of gravitation . But in 1998, researchers observed that distant supernovae seemed less bright than would be expected in a Universe whose expansion was decelerating. In fact, far from decelerating, the Universe’s expansion is accelerating from the effect of a mysterious energy known as “dark energy”.

The Universe is now thought to consist of around one quarter matter and three quarters dark energy, which acts on the Universe’s expansion like a repulsive force. Matter and dark energy behave differently with respect to the Universe’s expansion: matter becomes diluted; dark energy does not, or does so only a little.


Supernovae are stars exploding at the end of their life. They are very bright and can therefore be used as “milestones” in the Universe because their apparent brightness tells us how far away they are. So when we look at supernovae, we can measure the speed and distance at which they are moving away from us (through their shift towards red) and, from this, work out the speed at which the Universe is expanding.

The SNLS has measured the distance of 71 supernovae, the furthest of which exploded when the Universe was less than half its current age. The aim of the project is to measure dark energy precisely and to determine its nature, which currently remains unknown. However, by measuring the flux of distant supernovae, it is possible to work out whether it behaves like Einstein’s cosmological constant or according to a number of other theoretical hypotheses. What sets these theories apart is whether or not the density of dark energy becomes diluted with the expansion of the Universe. The measurement being published today is the most precise so far and favors an absence of dilution.

French researchers are currently working in close collaboration with European and North American (Canadian and US) research teams to find out more about supernovae, using photometry with Megacam and spectroscopy with the largest ground-based telescopes. At the end of five years’ observation, the results published today could be two to three times more precise.

Anne-Gabrielle Dauba-Pantanacce | alfa
Further information:
http://www.cea.fr

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>