Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dark energy or cosmological constant


The first results obtained from the SNLS (Supernova Legacy Survey) international collaboration – in which CEA-Dapnia and CNRS (IN2P3 and INSU) are participants – are showing that the mysterious “dark energy” assumed to be responsible for the acceleration in the Universe’s expansion could be Einstein’s cosmological constant. The results were published on Monday 21 November in the journal Astronomy & Astrophysics.

A few years ago, astrophysicists thought that the Universe’s expansion, discovered by Edwin Hubble during the 1920s, was slowing down under the effect of gravitation . But in 1998, researchers observed that distant supernovae seemed less bright than would be expected in a Universe whose expansion was decelerating. In fact, far from decelerating, the Universe’s expansion is accelerating from the effect of a mysterious energy known as “dark energy”.

The Universe is now thought to consist of around one quarter matter and three quarters dark energy, which acts on the Universe’s expansion like a repulsive force. Matter and dark energy behave differently with respect to the Universe’s expansion: matter becomes diluted; dark energy does not, or does so only a little.

Supernovae are stars exploding at the end of their life. They are very bright and can therefore be used as “milestones” in the Universe because their apparent brightness tells us how far away they are. So when we look at supernovae, we can measure the speed and distance at which they are moving away from us (through their shift towards red) and, from this, work out the speed at which the Universe is expanding.

The SNLS has measured the distance of 71 supernovae, the furthest of which exploded when the Universe was less than half its current age. The aim of the project is to measure dark energy precisely and to determine its nature, which currently remains unknown. However, by measuring the flux of distant supernovae, it is possible to work out whether it behaves like Einstein’s cosmological constant or according to a number of other theoretical hypotheses. What sets these theories apart is whether or not the density of dark energy becomes diluted with the expansion of the Universe. The measurement being published today is the most precise so far and favors an absence of dilution.

French researchers are currently working in close collaboration with European and North American (Canadian and US) research teams to find out more about supernovae, using photometry with Megacam and spectroscopy with the largest ground-based telescopes. At the end of five years’ observation, the results published today could be two to three times more precise.

Anne-Gabrielle Dauba-Pantanacce | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>