Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Was Einstein’s ’biggest blunder’ a stellar success?


New supernovae study offers tantalyzing clues about dark energy

The genius of Albert Einstein, who added a "cosmological constant" to his equation for the expansion of the universe but later retracted it, may be vindicated by new research.

The enigmatic dark energy that drives the accelerating expansion of the universe behaves just like Einstein’s famed cosmological constant, according to the Supernova Legacy Survey (SNLS), an international team of researchers in France and Canada that collaborated with large telescope observers at Oxford, Caltech and Berkeley. Their observations reveal that the dark energy behaves like Einstein’s cosmological constant to a precision of 10 per cent.

"The significance is huge," said Professor Ray Carlberg of the Department of Astronomy and Astrophysics at U of T. "Our observation is at odds with a number of theoretical ideas about the nature of dark energy that predict that it should change as the universe expands, and as far as we can see, it doesn’t." The results will be published in an upcoming issue of the journal Astronomy & Astrophysics.

"The Supernova Legacy Survey is arguably the world leader in our quest to understand the nature of dark energy," said study co-author Chris Pritchet, a professor of physics and astronomy at the University of Victoria in British Columbia, Canada.

The researchers made their discovery using an innovative, 340-million pixel camera called MegaCam, built by the Canada-France-Hawaii Telescope and the French atomic energy agency, Commissariat à l’Énergie Atomique. "Because of its wide field of view -- you can fit four moons in an image -- it allows us to measure simultaneously, and very precisely, several supernovae, which are rare events," said Pierre Astier, one of the scientists with the Centre National de la Recherche Scientifique (CNRS) in France.

"Improved observations of distant supernovae are the most immediate way in which we can learn more about the mysterious dark energy," adds Richard Ellis, a professor of astronomy at the California Institute of Technology. "This study is a very big step forward in quantity and quality."

Study co-author Saul Perlmutter, a physics professor at the University of California, Berkeley, says the findings kick off a dramatic new generation of cosmology work using supernovae. "The data is more beautiful than we could have imagined 10 years ago -- a real tribute to the instrument builders, the analysis teams and the large scientific vision of the Canadian and French science communities."

The SNLS is a collaborative international effort that uses images from the Canada-France-Hawaii Telescope, a 3.6-metre telescope atop Mauna Kea, a dormant Hawaiian volcano. The current results are based on about 20 nights of data, the first of over nearly 200 nights of observing time for this project. The researchers identify the few dozen bright pixels in the 340 million captured by MegaCam to find distant supernovae, then acquire their spectra using some of the largest telescopes on earth--the Frederick C. Gillett Gemini North Telescope on Mauna Kea, the Gemini South Telescope on the Cerro Pachón mountain in the Chilean Andes, the European Southern Observatory Very Large Telescopes (VLT) at the Paranal Observatory in Atacama, Chile, and the Keck telescopes on Mauna Kea. The SNLS is one component of a massive 500-night program of imaging being undertaken as the CFHT Legacy Survey. "Only the world’s largest optical telescopes -- those from eight to 10 metres in diameter -- are capable of studying distant supernovae in detail by examining the spectrum," said Isobel Hook, an astronomer in the Department of Astrophysics at Oxford University.

The current paper is based on about one-tenth of the imaging data that will be obtained by the end of the survey. Future results are expected to double or even triple the precision of these findings and conclusively solve several remaining mysteries about the nature of dark energy.

Nicolle Wahl | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>